L ecture 4. Neural Networks ||

Disclaimer. This note was modified from c¢s231n lecture notes by Prof. Li Fei-Fei at Stanford
University.

Table of Contents:

Babysitting the Learning Process

o Loss function
Train/val accuracy
Ratio of weights:updates
Activation/Gradient distributions per layer
First-layer visualizations
Regularization (L2/L1/Maxnorm/Dropout)
Parameter Updates

o Annealing the learning rate
Hyperparameter Optimization
Model Ensembles

[]
o O O O

Babysitting the Learning Process

There are multiple useful quantities you should monitor during training of a neural network. These
plots are the window into the training process and should be utilized to get intuitions about different
hyperparameter settings and how they should be changed for more efficient learning.

The x-axis of the plots below are always in units of epochs, which measure how many times every
example has been seen during training in expectation (e.g. one epoch means that every example has
been seen once). It is preferable to track epochs rather than iterations since the number of iterations
depends on the arbitrary setting of batch size.

Loss function

The first quantity that is useful to track during training is the loss, as it is evaluated on the individual
batches during the forward pass. Below is a cartoon diagram showing the loss over time, and
especially what the shape might tell you about the learning rate:

loss

low learning rate

high learning rate

good learning rate

00

epoch 0 0] &0 B0 m(l

Epoch

Left: A cartoon depicting the effects of different learning rates. With low learning rates the improvements will
be linear. With high learning rates they will start to look more exponential. Higher learning rates will decay the
loss faster, but they get stuck at worse values of loss (green line). This is because there is too much "energy" in
the optimization and the parameters are bouncing around chaotically, unable to settle in a nice spot in the
optimization landscape. Right: An example of a typical loss function over time, while training a small network
on CIFAR-10 dataset. This loss function looks reasonable (it might indicate a slightly too small learning rate
based on its speed of decay, but it's hard to say), and also indicates that the batch size might be a little too
low (since the cost is a little too noisy).

The amount of “wiggle” in the loss is related to the batch size. When the batch size is 1, the wiggle
will be relatively high. When the batch size is the full dataset, the wiggle will be minimal because
every gradient update should be improving the loss function monotonically (unless the learning rate
is set too high).

Some people prefer to plot their loss functions in the log domain. Since learning progress generally
takes an exponential form shape, the plot appears as a slightly more interpretable straight line, rather
than a hockey stick. Additionally, if multiple cross-validated models are plotted on the same loss
graph, the differences between them become more apparent.

Sometimes loss functions can look funny lossfunctions.tumblr.com.

Train/Val accuracy

The second important quantity to track while training a classifier is the validation/training accuracy.
This plot can give you valuable insights into the amount of overfitting in your model:

The gap between the training and validation accuracy indicates the
i amount of overfitting. Two possible cases are shown in the diagram on
little overfitting the left. The blue validation error curve shows very small validation
accuracy compared to the training accuracy, indicating strong
overfitting (note, it's possible for the validation accuracy to even start to
go down after some point). When you see this in practice you probably
want to increase regularization (stronger L2 weight penalty, more
dropout, etc.) or collect more data. The other possible case is when the

A o
accuracy 1ra|n|ng accurac

validation accuracy: strong overfitting

» validation accuracy tracks the training accuracy fairly well. This case

epoch
indicates that your model capacity is not high enough: make the model

larger by increasing the number of parameters.

http://lossfunctions.tumblr.com/

Ratio of weights:updates

The last quantity you might want to track is the ratio of the update magnitudes to the value
magnitudes. Note: updates, not the raw gradients (e.g. in vanilla sgd this would be the gradient
multiplied by the learning rate). You might want to evaluate and track this ratio for every set of
parameters independently. A rough heuristic is that this ratio should be somewhere around 1le-3. If it
is lower than this then the learning rate might be too low. If it is higher then the learning rate is likely
too high. Here is a specific example:

assume parameter vector W and its gradient vector dW o
param_scale = np.linalg.norm(W.ravel())

update = —learning_ratexdW # simp/e SGD update

update_scale = np.linalg.norm(update.ravel())

W += update # the actual update

print update_scale / param_scale # want ~le-3 v
4 >

Instead of tracking the min or the max, some people prefer to compute and track the norm of the
gradients and their updates instead. These metrics are usually correlated and often give
approximately the same results.

Activation / Gradient distributions per layer

An incorrect initialization can slow down or even completely stall the learning process. Luckily, this
issue can be diagnosed relatively easily. One way to do so is to plot activation/gradient histograms
for all layers of the network. Intuitively, it is not a good sign to see any strange distributions - e.g.
with tanh neurons we would like to see a distribution of neuron activations between the full range of
[-1,1], instead of seeing all neurons outputting zero, or all neurons being completely saturated at
either -1 or 1.

First-layer Visualizations

Lastly, when one is working with image pixels it can be helpful and satisfying to plot the first-layer
features visually:

Examples of visualized weights for the first layer of a neural network. Left: Noisy features indicate could be a
symptom: Unconverged network, improperly set learning rate, very low weight regularization penalty. Right:
Nice, smooth, clean and diverse features are a good indication that the training is proceeding well.

Regularization

There are several ways of controlling the capacity of Neural Networks to prevent overfitting:

L2 regularization is perhaps the most common form of regularization. It can be implemented by
penalizing the squared magnitude of all parameters directly in the objective. That is, for every weight
w in the network, we add the term %)\w2 to the objective, where X is the regularization strength. It is
common to see the factor of ;— in front because then the gradient of this term with respect to the
parameter w is simply Aw instead of 2Aw. The L2 regularization has the intuitive interpretation of
heavily penalizing peaky weight vectors and preferring diffuse weight vectors. As we discussed in the
Linear Classification section, due to multiplicative interactions between weights and inputs this has
the appealing property of encouraging the network to use all of its inputs a little rather than some of
its inputs a lot. Lastly, notice that during gradient descent parameter update, using the L2
regularization ultimately means that every weight is decayed linearly: W += -lambda * W towards
zero.

L1 regularization is another relatively common form of regularization, where for each weight w we
add the term A | w| to the objective. It is possible to combine the L1 regularization with the L2
regularization: A\; | w | +Xaw? (this is called Elastic net regularization). The L1 regularization has the
intriguing property that it leads the weight vectors to become sparse during optimization (i.e. very
close to exactly zero). In other words, neurons with L1 regularization end up using only a sparse
subset of their most important inputs and become nearly invariant to the “noisy” inputs. In
comparison, final weight vectors from L2 regularization are usually diffuse, small numbers. In
practice, if you are not concerned with explicit feature selection, L2 regularization can be expected to
give superior performance over L1.

Max norm constraints. Another form of regularization is to enforce an absolute upper bound on the
magnitude of the weight vector for every neuron and use projected gradient descent to enforce the
constraint. In practice, this corresponds to performing the parameter update as normal, and then
enforcing the constraint by clamping the weight vector w of every neuron to satisfy ||w||2 < c.
Typical values of ¢ are on orders of 3 or 4. Some people report improvements when using this form
of regularization. One of its appealing properties is that network cannot “explode” even when the
learning rates are set too high because the updates are always bounded.

Dropout is an extremely effective, simple and recently introduced regularization technique by
Srivastava et al. in Dropout: A Simple Way to Prevent Neural Networks from Overfitting (pdf) that
complements the other methods (L1, L2, maxnorm). While training, dropout is implemented by only
keeping a neuron active with some probability p (a hyperparameter), or setting it to zero otherwise.

http://web.stanford.edu/~hastie/Papers/B67.2%20%282005%29%20301-320%20Zou%20&%20Hastie.pdf
http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf

(a) Standard Neural Net (b) After applying dropout.

Figure taken from the Dropout paper that illustrates the idea. During training, Dropout can be interpreted as
sampling a Neural Network within the full Neural Network, and only updating the parameters of the sampled
network based on the input data. (However, the exponential number of possible sampled networks are not
independent because they share the parameters.) During testing there is no dropout applied, with the
interpretation of evaluating an averaged prediction across the exponentially-sized ensemble of all sub-
networks (more about ensembles in the next section).

Vanilla dropout in an example 3-layer Neural Network would be implemented as follows:

""" Vanilla Dropout: Not recommended implementation (see notes below) """ o
p =0.5 #probability of keeping a unit active. higher = less dropout
def train_step(X):
""" X contains the data """
forward pass for example 3-layer neural network
H1 = np.maximum(0, np.dot(W1, X) + b1)
U1l = np.random.rand(*H1.shape) < p # F/irst dropout mask
H1 %= U1 # drop!/
H2 = np.maximum(0, np.dot(W2, H1) + b2)
U2 = np.random.rand(*H2.shape) < p # second dropout mask
H2 *= U2 # drop!
out = np.dot(W3, H2) + b3
backward pass: compute gradients... (not shown)
perform parameter update... (not shown)
def predict(X):
ensembled forward pass
H1 = np.maximum(0, np.dot(W1, X) + bl) * p # NOJE: scale the activations
H2 = np.maximum(0, np.dot(W2, H1) + b2) * p # NOTE: scale the activations
out = np.dot (W3, H2) + b3 v

4 4

In the code above, inside the train_step function we have performed dropout twice: on the first
hidden layer and on the second hidden layer. It is also possible to perform dropout right on the input
layer, in which case we would also create a binary mask for the input X . The backward pass remains
unchanged, but of course has to take into account the generated masks U1,U2 .

http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf

Crucially, note that in the predict function we are not dropping anymore, but we are performing a
scaling of both hidden layer outputs by p. This is important because at test time all neurons see all
their inputs, so we want the outputs of neurons at test time to be identical to their expected outputs
at training time. For example, in case of p = 0.5, the neurons must halve their outputs at test time to
have the same output as they had during training time (in expectation). To see this, consider an
output of a neuron x (before dropout). With dropout, the expected output from this neuron will
become px + (1 — p)0, because the neuron’s output will be set to zero with probability 1 — p. At
test time, when we keep the neuron always active, we must adjust & — px to keep the same
expected output. It can also be shown that performing this attenuation at test time can be related to
the process of iterating over all the possible binary masks (and therefore all the exponentially many
sub-networks) and computing their ensemble prediction.

The undesirable property of the scheme presented above is that we must scale the activations by p
at test time. Since test-time performance is so critical, it is always preferable to use inverted dropout,
which performs the scaling at train time, leaving the forward pass at test time untouched.
Additionally, this has the appealing property that the prediction code can remain untouched when
you decide to tweak where you apply dropout, or if at all. Inverted dropout looks as follows:

mnun ‘
Inverted Dropout: Recommended implementation example.
We drop and scale at train time and don't do anything at test time.
p=0.5
def train_step(X):
H1 = np.maximum(0, np.dot(W1, X) + b1)
Ul = (np.random.rand(*H1.shape) < p) / p
H1 *= U1
H2 = np.maximum(0, np.dot(W2, H1) + b2)
U2 = (np.random.rand(*H2.shape) < p) / p
H2 *= U2
out = np.dot(W3, H2) + b3
def predict(X):
H1 = np.maximum(0, np.dot(W1, X) + b1)
H2 = np.maximum(0, np.dot(W2, H1) + b2)
out = np.dot(W3, H2) + b3 v
4 >

There has a been a large amount of research after the first introduction of dropout that tries to
understand the source of its power in practice, and its relation to the other regularization techniques.
Recommended further reading for an interested reader includes:

e Dropout paper by Srivastava et al. 2014.

http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf

e Dropout Training as Adaptive Regularization: “we show that the dropout regularizer is first-order
equivalent to an L2 regularizer applied after scaling the features by an estimate of the inverse
diagonal Fisher information matrix”.

Theme of noise in forward pass. Dropout falls into a more general category of methods that
introduce stochastic behavior in the forward pass of the network. During testing, the noise is
marginalized over analytically (as is the case with dropout when multiplying by p), or numerically
(e.g. via sampling, by performing several forward passes with different random decisions and then
averaging over them). An example of other research in this direction includes DropConnect, where a
random set of weights is instead set to zero during forward pass. As foreshadowing, Convolutional
Neural Networks also take advantage of this theme with methods such as stochastic pooling,
fractional pooling, and data augmentation. We will go into details of these methods later.

Bias regularization. As we already mentioned in the Linear Classification section, it is not common to
regularize the bias parameters because they do not interact with the data through multiplicative
interactions, and therefore do not have the interpretation of controlling the influence of a data
dimension on the final objective. However, in practical applications (and with proper data
preprocessing) regularizing the bias rarely leads to significantly worse performance. This is likely
because there are very few bias terms compared to all the weights, so the classifier can “afford to”
use the biases if it needs them to obtain a better data loss.

Per-layer regularization. It is not very common to regularize different layers to different amounts
(except perhaps the output layer). Relatively few results regarding this idea have been published in
the literature.

In practice! It is most common to use a single, global L2 regularization strength that is cross-
validated. It is also common to combine this with dropout applied after all layers. The value of
p = 0.5 is a reasonable default, but this can be tuned on validation data.

Parameter Updates

Annealing the learning rate

In training deep networks, it is usually helpful to anneal the learning rate over time. Good intuition to
have in mind is that with a high learning rate, the system contains too much kinetic energy and the
parameter vector bounces around chaotically, unable to settle down into deeper, but narrower parts
of the loss function. Knowing when to decay the learning rate can be tricky: Decay it slowly and you'll
be wasting computation bouncing around chaotically with little improvement for a long time. But
decay it too aggressively and the system will cool too quickly, unable to reach the best position it
can. There are three common types of implementing the learning rate decay:

e Step decay: Reduce the learning rate by some factor every few epochs. Typical values might be
reducing the learning rate by a half every 5 epochs, or by 0.1 every 20 epochs. These numbers
depend heavily on the type of problem and the model. One heuristic you may see in practice is
to watch the validation error while training with a fixed learning rate, and reduce the learning
rate by a constant (e.g. 0.5) whenever the validation error stops improving.

http://papers.nips.cc/paper/4882-dropout-training-as-adaptive-regularization.pdf
http://cs.nyu.edu/~wanli/dropc/

 Exponential decay. has the mathematical form o = age ", where oy, k are hyperparameters
and t is the iteration number (but you can also use units of epochs).

e 1/t decay has the mathematical form o = o /(1 + kt) where ag, k are hyperparameters and
t is the iteration number.

In practice, we find that the step decay is slightly preferable because the hyperparameters it involves
(the fraction of decay and the step timings in units of epochs) are more interpretable than the
hyperparameter k. Lastly, if you can afford the computational budget, err on the side of slower decay
and train for a longer time.

Hyperparameter Optimization

As we've seen, training Neural Networks can involve many hyperparameter settings. The most
common hyperparameters in context of Neural Networks include:

e theinitial learning rate
e learning rate decay schedule (such as the decay constant)
* regularization strength (L2 penalty, dropout strength)

But as we saw, there are many more relatively less sensitive hyperparameters, for example in per-
parameter adaptive learning methods, the setting of momentum and its schedule, etc. In this section
we describe some additional tips and tricks for performing the hyperparameter search:

Implementation. Larger Neural Networks typically require a long time to train, so performing
hyperparameter search can take many days/weeks. It is important to keep this in mind since it
influences the design of your code base. One particular design is to have a worker that continuously
samples random hyperparameters and performs the optimization. During the training, the worker will
keep track of the validation performance after every epoch, and writes a model checkpoint (together
with miscellaneous training statistics such as the loss over time) to a file, preferably on a shared file
system. It is useful to include the validation performance directly in the filename, so that it is simple
to inspect and sort the progress. Then there is a second program which we will call a master, which
launches or kills workers across a computing cluster, and may additionally inspect the checkpoints
written by workers and plot their training statistics, etc.

Prefer one validation fold to cross-validation. In most cases a single validation set of respectable
size substantially simplifies the code base, without the need for cross-validation with multiple folds.
You'll hear people say they “cross-validated” a parameter, but many times it is assumed that they still
only used a single validation set.

Hyperparameter ranges. Search for hyperparameters on log scale. For example, a typical sampling of
the learning rate would look as follows: learning_rate = 10 ** uniform(-6, 1) . That is, we are
generating a random number from a uniform distribution, but then raising it to the power of 10. The
same strategy should be used for the regularization strength. Intuitively, this is because learning rate
and regularization strength have multiplicative effects on the training dynamics. For example, a fixed
change of adding 0.01 to a learning rate has huge effects on the dynamics if the learning rate is 0.001,
but nearly no effect if the learning rate when it is 10. This is because the learning rate multiplies the
computed gradient in the update. Therefore, it is much more natural to consider a range of learning
rate multiplied or divided by some value, than a range of learning rate added or subtracted to by

some value. Some parameters (e.g. dropout) are instead usually searched in the original scale (e.g.
dropout = uniform(0,1)).

Prefer random search to grid search. As argued by Bergstra and Bengio in Random Search for
Hyper-Parameter Optimization, “randomly chosen trials are more efficient for hyper-parameter
optimization than trials on a grid”. As it turns out, this is also usually easier to implement.

Grid Layout Random Layout

Unimportant parameter
Unimportant parameter

Important parameter Important parameter

Core illustration from Random Search for Hyper-Parameter Optimization by Bergstra and Bengio. It is very
often the case that some of the hyperparameters matter much more than others (e.g. top hyperparam vs. left
one in this figure). Performing random search rather than grid search allows you to much more precisely
discover good values for the important ones.

Careful with best values on border. Sometimes it can happen that you're searching for a
hyperparameter (e.g. learning rate) in a bad range. For example, suppose we use learning_rate = 10
*x uniform(-6, 1) . Once we receive the results, it is important to double check that the final
learning rate is not at the edge of this interval, or otherwise you may be missing more optimal
hyperparameter setting beyond the interval.

Stage your search from coarse to fine. In practice, it can be helpful to first search in coarse ranges
(e.g. 10 ** [-6, 1]), and then depending on where the best results are turning up, narrow the range.
Also, it can be helpful to perform the initial coarse search while only training for 1 epoch or even less,
because many hyperparameter settings can lead the model to not learn at all, or immediately
explode with infinite cost. The second stage could then perform a narrower search with 5 epochs,
and the last stage could perform a detailed search in the final range for many more epochs (for
example).

Bayesian Hyperparameter Optimization is a whole area of research devoted to coming up with
algorithms that try to more efficiently navigate the space of hyperparameters. The core idea is to
appropriately balance the exploration - exploitation trade-off when querying the performance at
different hyperparameters. Multiple libraries have been developed based on these models as well,
among some of the better known ones are Spearmint, SMAC, and Hyperopt. However, in practical
settings with ConvNets it is still relatively difficult to beat random search in a carefully-chosen
intervals. See some additional from-the-trenches discussion here.

Model Ensembles

In practice, one reliable approach to improving the performance of Neural Networks by a few percent
is to train multiple independent models, and at test time average their predictions. As the number of
models in the ensemble increases, the performance typically monotonically improves (though with

http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
https://github.com/JasperSnoek/spearmint
http://www.cs.ubc.ca/labs/beta/Projects/SMAC/
http://jaberg.github.io/hyperopt/
http://nlpers.blogspot.com/2014/10/hyperparameter-search-bayesian.html

diminishing returns). Moreover, the improvements are more dramatic with higher model variety in
the ensemble. There are a few approaches to forming an ensemble:

¢ Same model, different initializations. Use cross-validation to determine the best
hyperparameters, then train multiple models with the best set of hyperparameters but with
different random initialization. The danger with this approach is that the variety is only due to
initialization.

e Top models discovered during cross-validation. Use cross-validation to determine the best
hyperparameters, then pick the top few (e.g. 10) models to form the ensemble. This improves
the variety of the ensemble but has the danger of including suboptimal models. In practice, this
can be easier to perform since it doesn’t require additional retraining of models after cross-
validation

e Different checkpoints of a single model. If training is very expensive, some people have had
limited success in taking different checkpoints of a single network over time (for example after
every epoch) and using those to form an ensemble. Clearly, this suffers from some lack of
variety, but can still work reasonably well in practice. The advantage of this approach is that is
very cheap.

* Running average of parameters during training. Related to the last point, a cheap way of
almost always getting an extra percent or two of performance is to maintain a second copy of
the network’s weights in memory that maintains an exponentially decaying sum of previous
weights during training. This way you're averaging the state of the network over last several
iterations. You will find that this “smoothed” version of the weights over last few steps almost
always achieves better validation error. The rough intuition to have in mind is that the objective
is bowl-shaped and your network is jumping around the mode, so the average has a higher
chance of being somewhere nearer the mode.

One disadvantage of model ensembles is that they take longer to evaluate on test example. An
interested reader may find the recent work from Geoff Hinton on “Dark Knowledge” inspiring, where
the idea is to “distill” a good ensemble back to a single model by incorporating the ensemble log
likelihoods into a modified objective.

https://www.youtube.com/watch?v=EK61htlw8hY

