
Disclaimer: This note was modified from cs231n lecture notes by Prof. Li Fei-Fei at Stanford

University.

Table of Contents:

Babysitting the Learning Process

Loss function

Train/val accuracy

Ratio of weights:updates

Activation/Gradient distributions per layer

First-layer visualizations

Regularization (L2/L1/Maxnorm/Dropout)

Parameter Updates

Annealing the learning rate

Hyperparameter Optimization

Model Ensembles

Babysitting the Learning Process
There are multiple useful quantities you should monitor during training of a neural network. These

plots are the window into the training process and should be utilized to get intuitions about different

hyperparameter settings and how they should be changed for more efficient learning.

The x-axis of the plots below are always in units of epochs, which measure how many times every

example has been seen during training in expectation (e.g. one epoch means that every example has

been seen once). It is preferable to track epochs rather than iterations since the number of iterations

depends on the arbitrary setting of batch size.

Loss function

The first quantity that is useful to track during training is the loss, as it is evaluated on the individual

batches during the forward pass. Below is a cartoon diagram showing the loss over time, and

especially what the shape might tell you about the learning rate:

Lecture 4. Neural Networks II

Left: A cartoon depicting the effects of different learning rates. With low learning rates the improvements will

be linear. With high learning rates they will start to look more exponential. Higher learning rates will decay the

loss faster, but they get stuck at worse values of loss (green line). This is because there is too much "energy" in

the optimization and the parameters are bouncing around chaotically, unable to settle in a nice spot in the

optimization landscape. Right: An example of a typical loss function over time, while training a small network

on CIFAR-10 dataset. This loss function looks reasonable (it might indicate a slightly too small learning rate

based on its speed of decay, but it's hard to say), and also indicates that the batch size might be a little too

low (since the cost is a little too noisy).

The amount of “wiggle” in the loss is related to the batch size. When the batch size is 1, the wiggle

will be relatively high. When the batch size is the full dataset, the wiggle will be minimal because

every gradient update should be improving the loss function monotonically (unless the learning rate

is set too high).

Some people prefer to plot their loss functions in the log domain. Since learning progress generally

takes an exponential form shape, the plot appears as a slightly more interpretable straight line, rather

than a hockey stick. Additionally, if multiple cross-validated models are plotted on the same loss

graph, the differences between them become more apparent.

Sometimes loss functions can look funny lossfunctions.tumblr.com.

Train/Val accuracy

The second important quantity to track while training a classifier is the validation/training accuracy.

This plot can give you valuable insights into the amount of overfitting in your model:

The gap between the training and validation accuracy indicates the

amount of overfitting. Two possible cases are shown in the diagram on

the left. The blue validation error curve shows very small validation

accuracy compared to the training accuracy, indicating strong

overfitting (note, it's possible for the validation accuracy to even start to

go down after some point). When you see this in practice you probably

want to increase regularization (stronger L2 weight penalty, more

dropout, etc.) or collect more data. The other possible case is when the

validation accuracy tracks the training accuracy fairly well. This case

indicates that your model capacity is not high enough: make the model

larger by increasing the number of parameters.

http://lossfunctions.tumblr.com/

 





Ratio of weights:updates

The last quantity you might want to track is the ratio of the update magnitudes to the value

magnitudes. Note: updates, not the raw gradients (e.g. in vanilla sgd this would be the gradient

multiplied by the learning rate). You might want to evaluate and track this ratio for every set of

parameters independently. A rough heuristic is that this ratio should be somewhere around 1e-3. If it

is lower than this then the learning rate might be too low. If it is higher then the learning rate is likely

too high. Here is a specific example:

assume parameter vector W and its gradient vector dW

param_scale = np.linalg.norm(W.ravel())

update = -learning_rate*dW # simple SGD update

update_scale = np.linalg.norm(update.ravel())

W += update # the actual update

print update_scale / param_scale # want ~1e-3

Instead of tracking the min or the max, some people prefer to compute and track the norm of the

gradients and their updates instead. These metrics are usually correlated and often give

approximately the same results.

Activation / Gradient distributions per layer

An incorrect initialization can slow down or even completely stall the learning process. Luckily, this

issue can be diagnosed relatively easily. One way to do so is to plot activation/gradient histograms

for all layers of the network. Intuitively, it is not a good sign to see any strange distributions - e.g.

with tanh neurons we would like to see a distribution of neuron activations between the full range of

[-1,1], instead of seeing all neurons outputting zero, or all neurons being completely saturated at

either -1 or 1.

First-layer Visualizations

Lastly, when one is working with image pixels it can be helpful and satisfying to plot the first-layer

features visually:

Examples of visualized weights for the first layer of a neural network. Left: Noisy features indicate could be a

symptom: Unconverged network, improperly set learning rate, very low weight regularization penalty. Right:

Nice, smooth, clean and diverse features are a good indication that the training is proceeding well.

Regularization
There are several ways of controlling the capacity of Neural Networks to prevent overfitting:

L2 regularization is perhaps the most common form of regularization. It can be implemented by

penalizing the squared magnitude of all parameters directly in the objective. That is, for every weight

 in the network, we add the term to the objective, where is the regularization strength. It is

common to see the factor of in front because then the gradient of this term with respect to the

parameter is simply instead of . The L2 regularization has the intuitive interpretation of

heavily penalizing peaky weight vectors and preferring diffuse weight vectors. As we discussed in the

Linear Classification section, due to multiplicative interactions between weights and inputs this has

the appealing property of encouraging the network to use all of its inputs a little rather than some of

its inputs a lot. Lastly, notice that during gradient descent parameter update, using the L2

regularization ultimately means that every weight is decayed linearly: W += -lambda * W towards

zero.

L1 regularization is another relatively common form of regularization, where for each weight we

add the term to the objective. It is possible to combine the L1 regularization with the L2

regularization: (this is called Elastic net regularization). The L1 regularization has the

intriguing property that it leads the weight vectors to become sparse during optimization (i.e. very

close to exactly zero). In other words, neurons with L1 regularization end up using only a sparse

subset of their most important inputs and become nearly invariant to the “noisy” inputs. In

comparison, final weight vectors from L2 regularization are usually diffuse, small numbers. In

practice, if you are not concerned with explicit feature selection, L2 regularization can be expected to

give superior performance over L1.

Max norm constraints. Another form of regularization is to enforce an absolute upper bound on the

magnitude of the weight vector for every neuron and use projected gradient descent to enforce the

constraint. In practice, this corresponds to performing the parameter update as normal, and then

enforcing the constraint by clamping the weight vector of every neuron to satisfy .

Typical values of are on orders of 3 or 4. Some people report improvements when using this form

of regularization. One of its appealing properties is that network cannot “explode” even when the

learning rates are set too high because the updates are always bounded.

Dropout is an extremely effective, simple and recently introduced regularization technique by

Srivastava et al. in Dropout: A Simple Way to Prevent Neural Networks from Overfitting (pdf) that

complements the other methods (L1, L2, maxnorm). While training, dropout is implemented by only

keeping a neuron active with some probability (a hyperparameter), or setting it to zero otherwise.

w λ1
2

w2 λ
1
2

w λw 2λw

w

λ ∣ w∣

∣ w ∣ +λ1 λ2 w2

w⃗ ∥ < cw⃗ ∥2

c

p

http://web.stanford.edu/~hastie/Papers/B67.2%20%282005%29%20301-320%20Zou%20&%20Hastie.pdf
http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf

 





Figure taken from the Dropout paper that illustrates the idea. During training, Dropout can be interpreted as

sampling a Neural Network within the full Neural Network, and only updating the parameters of the sampled

network based on the input data. (However, the exponential number of possible sampled networks are not

independent because they share the parameters.) During testing there is no dropout applied, with the

interpretation of evaluating an averaged prediction across the exponentially-sized ensemble of all sub-

networks (more about ensembles in the next section).

Vanilla dropout in an example 3-layer Neural Network would be implemented as follows:

""" Vanilla Dropout: Not recommended implementation (see notes below) """

p = 0.5 # probability of keeping a unit active. higher = less dropout

def train_step(X):

 """ X contains the data """

 # forward pass for example 3-layer neural network

 H1 = np.maximum(0, np.dot(W1, X) + b1)

 U1 = np.random.rand(*H1.shape) < p # first dropout mask

 H1 *= U1 # drop!

 H2 = np.maximum(0, np.dot(W2, H1) + b2)

 U2 = np.random.rand(*H2.shape) < p # second dropout mask

 H2 *= U2 # drop!

 out = np.dot(W3, H2) + b3

 # backward pass: compute gradients... (not shown)

 # perform parameter update... (not shown)

def predict(X):

 # ensembled forward pass

 H1 = np.maximum(0, np.dot(W1, X) + b1) * p # NOTE: scale the activations

 H2 = np.maximum(0, np.dot(W2, H1) + b2) * p # NOTE: scale the activations

 out = np.dot(W3, H2) + b3

In the code above, inside the train_step function we have performed dropout twice: on the first

hidden layer and on the second hidden layer. It is also possible to perform dropout right on the input

layer, in which case we would also create a binary mask for the input X . The backward pass remains

unchanged, but of course has to take into account the generated masks U1,U2 .

http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf

 





Crucially, note that in the predict function we are not dropping anymore, but we are performing a

scaling of both hidden layer outputs by . This is important because at test time all neurons see all

their inputs, so we want the outputs of neurons at test time to be identical to their expected outputs

at training time. For example, in case of , the neurons must halve their outputs at test time to

have the same output as they had during training time (in expectation). To see this, consider an

output of a neuron (before dropout). With dropout, the expected output from this neuron will

become , because the neuron’s output will be set to zero with probability . At

test time, when we keep the neuron always active, we must adjust to keep the same

expected output. It can also be shown that performing this attenuation at test time can be related to

the process of iterating over all the possible binary masks (and therefore all the exponentially many

sub-networks) and computing their ensemble prediction.

The undesirable property of the scheme presented above is that we must scale the activations by

at test time. Since test-time performance is so critical, it is always preferable to use inverted dropout,

which performs the scaling at train time, leaving the forward pass at test time untouched.

Additionally, this has the appealing property that the prediction code can remain untouched when

you decide to tweak where you apply dropout, or if at all. Inverted dropout looks as follows:

"""

Inverted Dropout: Recommended implementation example.

We drop and scale at train time and don't do anything at test time.

"""

p = 0.5 # probability of keeping a unit active. higher = less dropout

def train_step(X):

 # forward pass for example 3-layer neural network

 H1 = np.maximum(0, np.dot(W1, X) + b1)

 U1 = (np.random.rand(*H1.shape) < p) / p # first dropout mask. Notice /p!

 H1 *= U1 # drop!

 H2 = np.maximum(0, np.dot(W2, H1) + b2)

 U2 = (np.random.rand(*H2.shape) < p) / p # second dropout mask. Notice /p!

 H2 *= U2 # drop!

 out = np.dot(W3, H2) + b3

 # backward pass: compute gradients... (not shown)

 # perform parameter update... (not shown)

def predict(X):

 # ensembled forward pass

 H1 = np.maximum(0, np.dot(W1, X) + b1) # no scaling necessary

 H2 = np.maximum(0, np.dot(W2, H1) + b2)

 out = np.dot(W3, H2) + b3

There has a been a large amount of research after the first introduction of dropout that tries to

understand the source of its power in practice, and its relation to the other regularization techniques.

Recommended further reading for an interested reader includes:

Dropout paper by Srivastava et al. 2014.

p

p = 0.5

x

px + (1 − p)0 1 − p

x → px

p

http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf

Dropout Training as Adaptive Regularization: “we show that the dropout regularizer is first-order

equivalent to an L2 regularizer applied after scaling the features by an estimate of the inverse

diagonal Fisher information matrix”.

Theme of noise in forward pass. Dropout falls into a more general category of methods that

introduce stochastic behavior in the forward pass of the network. During testing, the noise is

marginalized over analytically (as is the case with dropout when multiplying by), or numerically

(e.g. via sampling, by performing several forward passes with different random decisions and then

averaging over them). An example of other research in this direction includes DropConnect, where a

random set of weights is instead set to zero during forward pass. As foreshadowing, Convolutional

Neural Networks also take advantage of this theme with methods such as stochastic pooling,

fractional pooling, and data augmentation. We will go into details of these methods later.

Bias regularization. As we already mentioned in the Linear Classification section, it is not common to

regularize the bias parameters because they do not interact with the data through multiplicative

interactions, and therefore do not have the interpretation of controlling the influence of a data

dimension on the final objective. However, in practical applications (and with proper data

preprocessing) regularizing the bias rarely leads to significantly worse performance. This is likely

because there are very few bias terms compared to all the weights, so the classifier can “afford to”

use the biases if it needs them to obtain a better data loss.

Per-layer regularization. It is not very common to regularize different layers to different amounts

(except perhaps the output layer). Relatively few results regarding this idea have been published in

the literature.

In practice: It is most common to use a single, global L2 regularization strength that is cross-

validated. It is also common to combine this with dropout applied after all layers. The value of

 is a reasonable default, but this can be tuned on validation data.

Parameter Updates

Annealing the learning rate

In training deep networks, it is usually helpful to anneal the learning rate over time. Good intuition to

have in mind is that with a high learning rate, the system contains too much kinetic energy and the

parameter vector bounces around chaotically, unable to settle down into deeper, but narrower parts

of the loss function. Knowing when to decay the learning rate can be tricky: Decay it slowly and you’ll

be wasting computation bouncing around chaotically with little improvement for a long time. But

decay it too aggressively and the system will cool too quickly, unable to reach the best position it

can. There are three common types of implementing the learning rate decay:

Step decay: Reduce the learning rate by some factor every few epochs. Typical values might be

reducing the learning rate by a half every 5 epochs, or by 0.1 every 20 epochs. These numbers

depend heavily on the type of problem and the model. One heuristic you may see in practice is

to watch the validation error while training with a fixed learning rate, and reduce the learning

rate by a constant (e.g. 0.5) whenever the validation error stops improving.

p

p = 0.5

http://papers.nips.cc/paper/4882-dropout-training-as-adaptive-regularization.pdf
http://cs.nyu.edu/~wanli/dropc/

Exponential decay. has the mathematical form , where are hyperparameters

and is the iteration number (but you can also use units of epochs).

1/t decay has the mathematical form where are hyperparameters and

 is the iteration number.

In practice, we find that the step decay is slightly preferable because the hyperparameters it involves

(the fraction of decay and the step timings in units of epochs) are more interpretable than the

hyperparameter . Lastly, if you can afford the computational budget, err on the side of slower decay

and train for a longer time.

Hyperparameter Optimization
As we've seen, training Neural Networks can involve many hyperparameter settings. The most

common hyperparameters in context of Neural Networks include:

the initial learning rate

learning rate decay schedule (such as the decay constant)

regularization strength (L2 penalty, dropout strength)

But as we saw, there are many more relatively less sensitive hyperparameters, for example in per-

parameter adaptive learning methods, the setting of momentum and its schedule, etc. In this section

we describe some additional tips and tricks for performing the hyperparameter search:

Implementation. Larger Neural Networks typically require a long time to train, so performing

hyperparameter search can take many days/weeks. It is important to keep this in mind since it

influences the design of your code base. One particular design is to have a worker that continuously

samples random hyperparameters and performs the optimization. During the training, the worker will

keep track of the validation performance after every epoch, and writes a model checkpoint (together

with miscellaneous training statistics such as the loss over time) to a file, preferably on a shared file

system. It is useful to include the validation performance directly in the filename, so that it is simple

to inspect and sort the progress. Then there is a second program which we will call a master, which

launches or kills workers across a computing cluster, and may additionally inspect the checkpoints

written by workers and plot their training statistics, etc.

Prefer one validation fold to cross-validation. In most cases a single validation set of respectable

size substantially simplifies the code base, without the need for cross-validation with multiple folds.

You’ll hear people say they “cross-validated” a parameter, but many times it is assumed that they still

only used a single validation set.

Hyperparameter ranges. Search for hyperparameters on log scale. For example, a typical sampling of

the learning rate would look as follows: learning_rate = 10 ** uniform(-6, 1) . That is, we are

generating a random number from a uniform distribution, but then raising it to the power of 10. The

same strategy should be used for the regularization strength. Intuitively, this is because learning rate

and regularization strength have multiplicative effects on the training dynamics. For example, a fixed

change of adding 0.01 to a learning rate has huge effects on the dynamics if the learning rate is 0.001,

but nearly no effect if the learning rate when it is 10. This is because the learning rate multiplies the

computed gradient in the update. Therefore, it is much more natural to consider a range of learning

rate multiplied or divided by some value, than a range of learning rate added or subtracted to by

α = α0 e−kt , kα0

t

α = /(1 + kt)α0 , ka0

t

k

some value. Some parameters (e.g. dropout) are instead usually searched in the original scale (e.g.

dropout = uniform(0,1)).

Prefer random search to grid search. As argued by Bergstra and Bengio in Random Search for

Hyper-Parameter Optimization, “randomly chosen trials are more efficient for hyper-parameter

optimization than trials on a grid”. As it turns out, this is also usually easier to implement.

Core illustration from Random Search for Hyper-Parameter Optimization by Bergstra and Bengio. It is very

often the case that some of the hyperparameters matter much more than others (e.g. top hyperparam vs. left

one in this figure). Performing random search rather than grid search allows you to much more precisely

discover good values for the important ones.

Careful with best values on border. Sometimes it can happen that you’re searching for a

hyperparameter (e.g. learning rate) in a bad range. For example, suppose we use learning_rate = 10

** uniform(-6, 1) . Once we receive the results, it is important to double check that the final

learning rate is not at the edge of this interval, or otherwise you may be missing more optimal

hyperparameter setting beyond the interval.

Stage your search from coarse to fine. In practice, it can be helpful to first search in coarse ranges

(e.g. 10 ** [-6, 1]), and then depending on where the best results are turning up, narrow the range.

Also, it can be helpful to perform the initial coarse search while only training for 1 epoch or even less,

because many hyperparameter settings can lead the model to not learn at all, or immediately

explode with infinite cost. The second stage could then perform a narrower search with 5 epochs,

and the last stage could perform a detailed search in the final range for many more epochs (for

example).

Bayesian Hyperparameter Optimization is a whole area of research devoted to coming up with

algorithms that try to more efficiently navigate the space of hyperparameters. The core idea is to

appropriately balance the exploration - exploitation trade-off when querying the performance at

different hyperparameters. Multiple libraries have been developed based on these models as well,

among some of the better known ones are Spearmint, SMAC, and Hyperopt. However, in practical

settings with ConvNets it is still relatively difficult to beat random search in a carefully-chosen

intervals. See some additional from-the-trenches discussion here.

Model Ensembles
In practice, one reliable approach to improving the performance of Neural Networks by a few percent

is to train multiple independent models, and at test time average their predictions. As the number of

models in the ensemble increases, the performance typically monotonically improves (though with

http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
https://github.com/JasperSnoek/spearmint
http://www.cs.ubc.ca/labs/beta/Projects/SMAC/
http://jaberg.github.io/hyperopt/
http://nlpers.blogspot.com/2014/10/hyperparameter-search-bayesian.html

diminishing returns). Moreover, the improvements are more dramatic with higher model variety in

the ensemble. There are a few approaches to forming an ensemble:

Same model, different initializations. Use cross-validation to determine the best

hyperparameters, then train multiple models with the best set of hyperparameters but with

different random initialization. The danger with this approach is that the variety is only due to

initialization.

Top models discovered during cross-validation. Use cross-validation to determine the best

hyperparameters, then pick the top few (e.g. 10) models to form the ensemble. This improves

the variety of the ensemble but has the danger of including suboptimal models. In practice, this

can be easier to perform since it doesn’t require additional retraining of models after cross-

validation

Different checkpoints of a single model. If training is very expensive, some people have had

limited success in taking different checkpoints of a single network over time (for example after

every epoch) and using those to form an ensemble. Clearly, this suffers from some lack of

variety, but can still work reasonably well in practice. The advantage of this approach is that is

very cheap.

Running average of parameters during training. Related to the last point, a cheap way of

almost always getting an extra percent or two of performance is to maintain a second copy of

the network’s weights in memory that maintains an exponentially decaying sum of previous

weights during training. This way you’re averaging the state of the network over last several

iterations. You will find that this “smoothed” version of the weights over last few steps almost

always achieves better validation error. The rough intuition to have in mind is that the objective

is bowl-shaped and your network is jumping around the mode, so the average has a higher

chance of being somewhere nearer the mode.

One disadvantage of model ensembles is that they take longer to evaluate on test example. An

interested reader may find the recent work from Geoff Hinton on “Dark Knowledge” inspiring, where

the idea is to “distill” a good ensemble back to a single model by incorporating the ensemble log

likelihoods into a modified objective.

https://www.youtube.com/watch?v=EK61htlw8hY

