

Vision-Language Multi-modal Learning for Biomedical Images Part I

Joonseok Lee

Graduate School of Data Science, Seoul National University Google Research

Apr 18, 2023

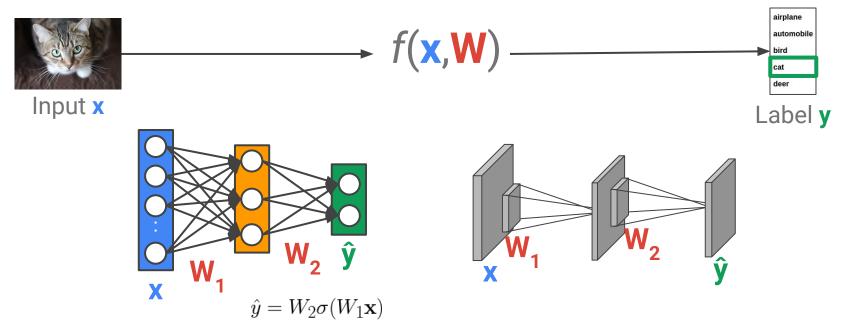
Today's Contents

- 1. Transformers
- 2. BERT
- 3. Vision Transformers
 - ViT
 - ViViT
- 4. Transformer-based Image-Text Models
 - VL-BERT
 - Vilbert
- 5. Transformer-based Video-Text Models
 - VideoBERT
 - CBT
 - Hammer
- 6. Large-scale Multimodal Pre-training
 - CLIP
 - MuLan

Transformers

Review: MLPs and CNNs

- What MLPs and CNNs learn:
 - A set of weights that best map from inputs **x** to the labels **y** in the training dataset.
 - Roughly speaking, the output $\hat{\mathbf{y}}$ is a weighted sum (+fixed unary operations) of input \mathbf{x} !



Review: RNNs

• Then, what about RNNs?

$$\mathbf{h}_{t} = f_{\mathbf{W}}(\mathbf{h}_{t-1}, \mathbf{x}_{t}) = \tanh(\mathbf{W}_{hh}\mathbf{h}_{t-1} + \mathbf{W}_{xh}\mathbf{x}_{t})$$

$$\mathbf{h}_{t-1} + \mathbf{W}_{xh}\mathbf{x}_{t}$$

$$\mathbf{h}_{t-1} + \mathbf{H}_{xh}\mathbf{x}_{t}$$

$$\mathbf{H}_{t-1} + \mathbf{H}_{xh}\mathbf{H}_{x}$$

$$\mathbf{H}_{t-$$

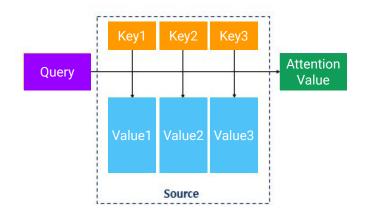
Again, the output $\hat{\mathbf{y}}$ is a weighted sum (+fixed unary operations) of input \mathbf{x} !

That is, the **W** is optimized to best map the input to the output in the training set, in terms of the loss function.

- Basic assumption: the input x can be split into multiple elements that are organically related to each other.
 - People in a society
 - Words in a sentence
 - Frames in a video
 - 0 ...
- Self-attention: Each element learns to refine its own representation by attending its context (other elements in the input).
 - More specifically, as a **weighted sum** of other elements in the sequence.

Review: Attention Idea

- Attention function: Attention (Q, K, V) = Attention value
 For a query (context) and key-value pairs (references), attention value is the weighted average of values, where each weight is proportional to the relevance between the query and the corresponding key.
 - \circ **Q** and **K** must be comparable (usually in the same dimensionality).
 - **V** and **Attention value** are in the same dimensionality, obviously.
 - In many applications, all four of these are in same dimensionality.

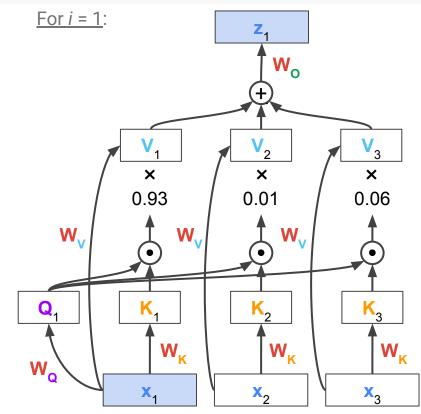


- So, what should be the Query, Key, and Value?
- With Transformer, we **make** them!
 - From the input tokens $\{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N\}$,
 - Each token x_i is mapped to its own Query Q_i, Key K_i, Value V_i vectors by a linear transformation.
 - The linear weights $(W_Q, W_{K'}, W_V)$ are the **learned parameters**, **shared by all inputs**.
 - $\circ \quad W_Q \left(W_{K'}, W_V \right) \text{ learns how to represent a vector to serve as a Query} \\ (Key, Value) \text{ in general.}$
- We need another learnable parameter, W_o, which maps the **attention value** back to the original space.

X

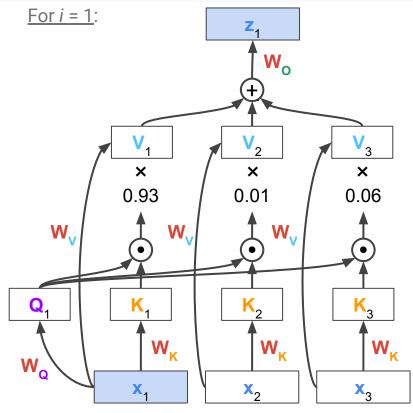
W

- Then, how do we perform attention?
 - Each token **x**_{*i*} becomes the **Query** when we learn about *i*.
 - You are the main character in your life!
 - References are all tokens $\{\mathbf{x}_1, ..., \mathbf{x}_N\}$ in the input sequence, including \mathbf{x}_i , itself.
 - Your friends are a mirror that reflects you.
- From this, we perform the attention:
 - Each element x, is represented as a weighted (similarity computed using Key) sum of other elements (using Value) in x.
 - $\circ \mathbf{z}_{i} = \mathbf{w}_{1}\mathbf{V}_{1} + \dots + \mathbf{w}_{N}\mathbf{V}_{N}, \text{ where } \mathbf{w}_{i} = \cos(\mathbf{Q}_{i}, \mathbf{K}_{i})$
 - W_o maps from the Value space back to the original embedding space.

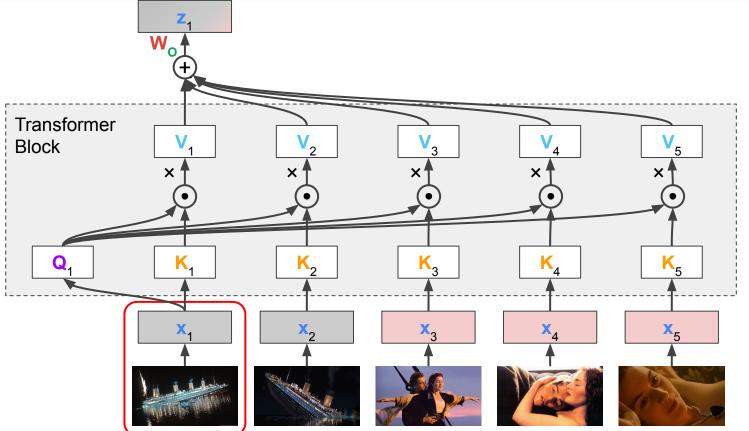


The same procedure is performed for all i = 1, ..., N.

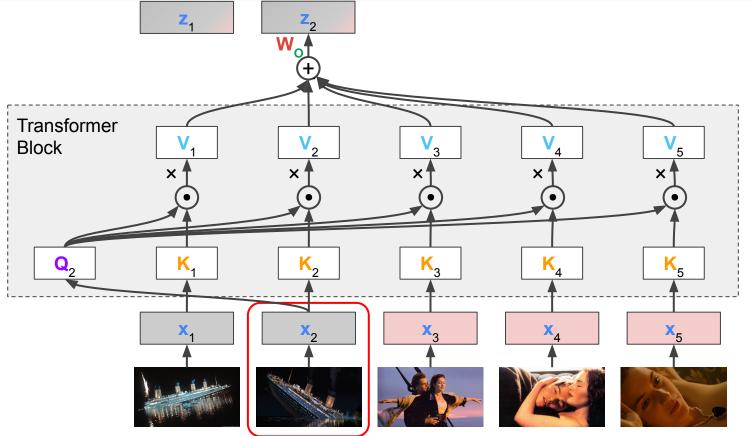
- This resulting embedding z₁ tends to be similar to its original one (x₁), because cos(Q₁, K₁) is likely to be much higher than other cos(Q₁, K_i).
- The resulting z₁ is still not exactly the same as the original one, slightly affected by its context (here, x₂, x₃).
- Usually, this step is repeated multiple times to further **contextualize**.

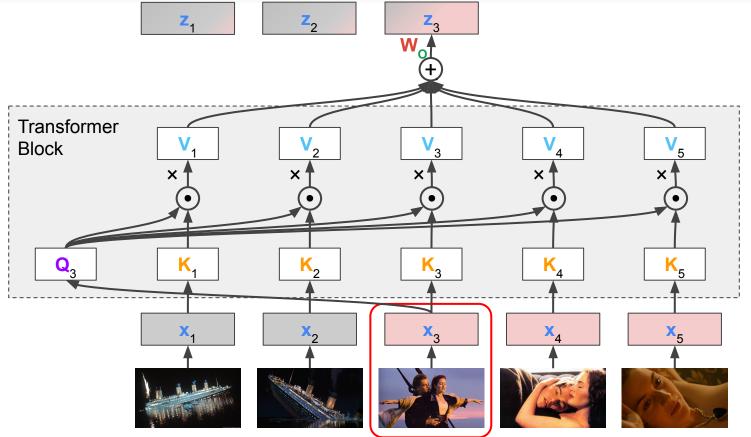


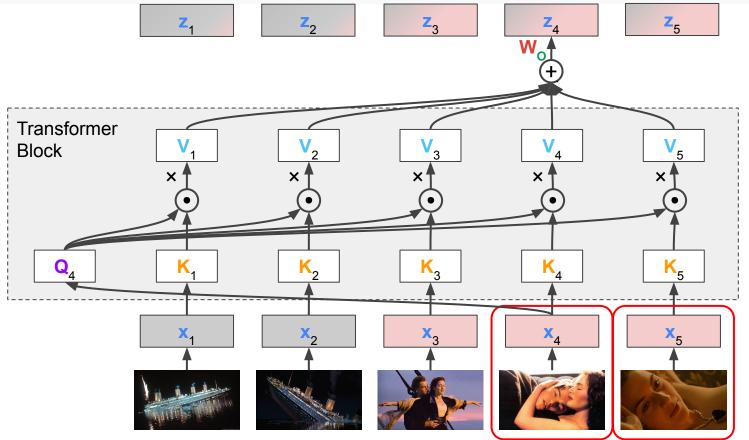
The same procedure is performed for all i = 1, ..., N.

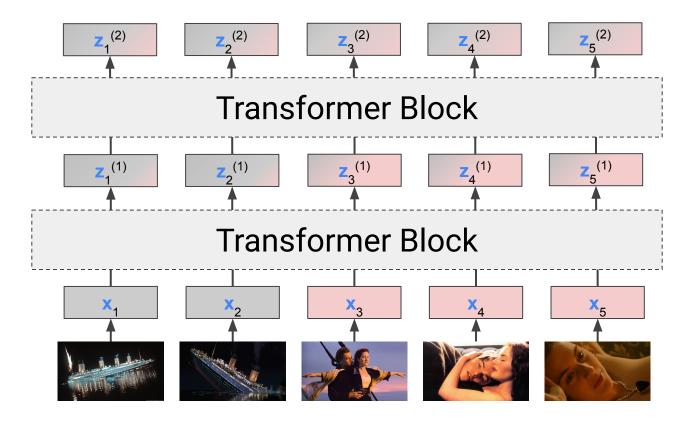


Visual Information Processing Lab. 11





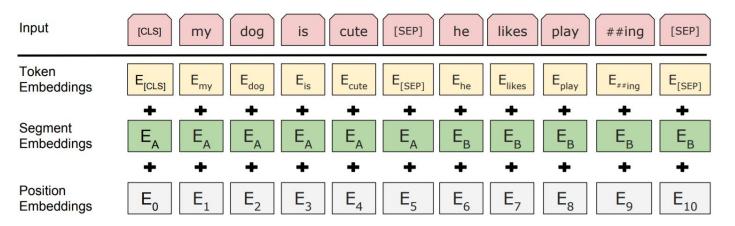




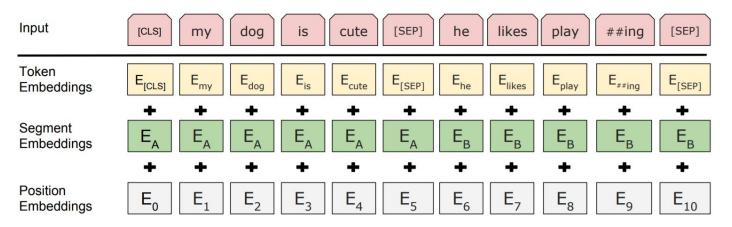
Bidirectional Encoder Representations from Transformers (BERT)

- Bidirectional Encoder Representations from Transformers
 - Large-scale **pre-training** of word embeddings using **Transformer encoder**
 - Self-supervised: no human rating required
 - Use the encoder (bi-directional; no masking) only

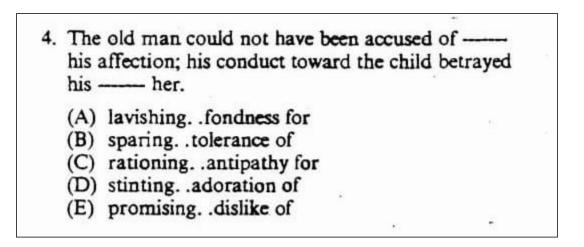
• <u>https://arxiv.org/pdf/1810.04805.pdf</u>



- Input sequence consists of **two sentences**, with sum of three things:
 - Token embedding: a pre-trained word embedding (WordPiece)
 - [CLS]: Classification token, put always at the beginning. Final hidden state for this token is used as the aggregate sequence representation for classification tasks
 - **SEP]**: Separator token, used to mark the end of a sentence
 - **Segment embedding**: a learned embedding indicating which sentence each token belongs to
 - **Position embedding**: a learned embedding for each position



- Training task 1: Masked Language Modeling (MLM)
 - Similar to sentence completion in standard English exams: figuring out the hidden words using the context.
 - Masking 15% of tokens randomly (substituting it to a special [MASK] token).
 - Classify the output embedding for these positions across the vocabulary.

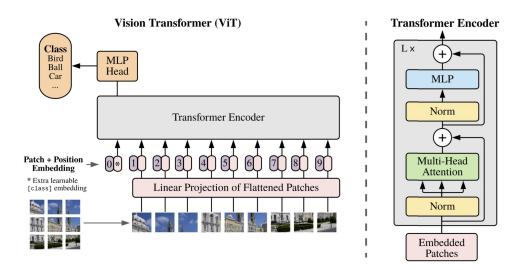


- Training task 2: Next Sentence Prediction (NSP)
 - A binary classification problem, predicting if the two sentences in the input are consecutive or not.
 - Half of training data contains two consecutive sentences (B is the actual next sentence of A).
 - The other half contains two sentences randomly chosen from the corpus.
- According to the authors, their model achieved ~98% accuracy on this task, and this was very beneficial to multiple tasks.
 - Later, turns out to be less important than MLM.
- These days, the pre-trained BERT is a default choice for word embeddings.

Vision Transformers

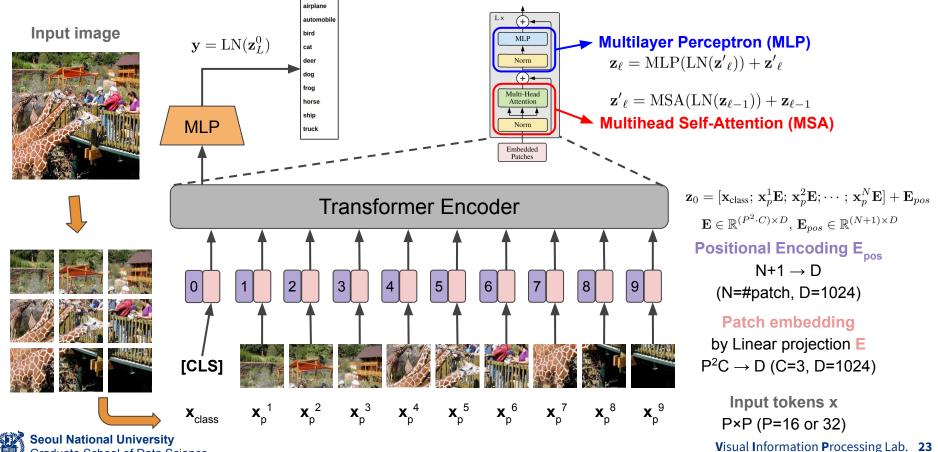
ViT: Vision Transformer

- The standard Transformer model is directly applied to images:
 - An image is split into 16×16 patches. (Each **token** is a **16×16 image patch** instead of a word.)
 - The sequence of linear embeddings of these patches are fed into a **Transformer**.
 - Image patches are treated on the same way as tokens (words).
 - Eventually, an **MLP** is added on top of the **[CLS] token** to classify the input image.



https://arxiv.org/pdf/2010.11929.pdf

ViT: Vision Transformer



Graduate School of Data Science

ViT: Experiments and Discussion

ViT outperforms previous SOTA (ResNet152) 😀

	Ours-JFT (ViT-H/14)	Ours-JFT (ViT-L/16)	Ours-I21k (ViT-L/16)	BiT-L (ResNet152x4)	Noisy Student (EfficientNet-L2)
ImageNet	88.55 ± 0.04	87.76 ± 0.03	85.30 ± 0.02	87.54 ± 0.02	$88.4/88.5^*$
ImageNet ReaL	90.72 ± 0.05	90.54 ± 0.03	88.62 ± 0.05	90.54	90.55
CIFAR-10	99.50 ± 0.06	99.42 ± 0.03	99.15 ± 0.03	99.37 ± 0.06	_
CIFAR-100	94.55 ± 0.04	93.90 ± 0.05	93.25 ± 0.05	93.51 ± 0.08	_
Oxford-IIIT Pets	97.56 ± 0.03	97.32 ± 0.11	94.67 ± 0.15	96.62 ± 0.23	—
Oxford Flowers-102	99.68 ± 0.02	99.74 ± 0.00	99.61 ± 0.02	99.63 ± 0.03	—
VTAB (19 tasks)	77.63 ± 0.23	76.28 ± 0.46	72.72 ± 0.21	76.29 ± 1.70	_
TPUv3-core-days	2.5k	0.68k	0.23k	9.9k	12.3k

It takes 300 days with 8 TPUv3 cores

US EUROPE ASIA PACIFIC

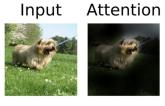
Version	On-demand	Preemptible
Cloud TPU v2	\$4.50 / TPU hour	\$1.35 / TPU hour
Cloud TPU v3	\$8.00 / TPU hour	\$2.40 / TPU hour

https://cloud.google.com/tpu#tab1

- TPU v3 costs \$8.00 per hour.
- \$8 × 24 hr/day × 2500 day =
 \$480,000 to train this model once!

ViT: Experiments and Discussion

- ViT performs well only when trained on an extremely large dataset (*e.g.*, JFT-300M).
 Why?
 - ViT does **NOT imply any inductive bias** (spatial locality & positional invariance) of CNNs.
 - It needs to learn those **purely from the data**. \rightarrow It requires large amount of examples.
 - Once sufficient training examples provided, however, it can outperform CNN-based models, as it is capable of modeling hard cases beyond spatial locality.



Example:

The model is able to attend wide range of the image even at an early layer. (as opposed to CNNs)

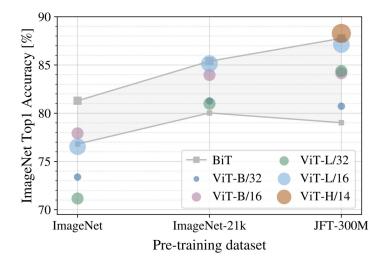
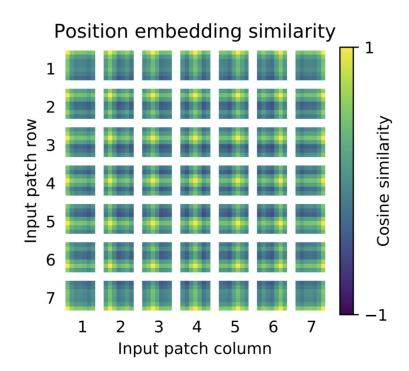


Figure 3: Transfer to ImageNet. While large ViT models perform worse than BiT ResNets (shaded area) when pre-trained on small datasets, they shine when pre-trained on larger datasets. Similarly, larger ViT variants overtake smaller ones as the dataset grows.

Seoul National University Graduate School of Data Science

ViT: Position Embeddings

- ViT learns to encode distance within the image in the similarity of position embeddings.
 - Closer patches tend to have more similar position embeddings.
- The row-column structure appears.
 - Patches in the same row/column have similar embeddings, automatically learned from data.
- Hand-crafted 2D-aware embedding variants do not yield improvements for this reason.

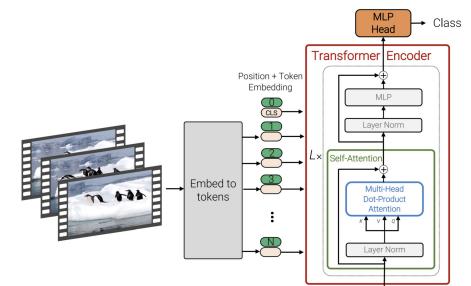


- Naturally extending the idea of ViT to video classification task. (Model 1)
 - Each frame is split into $n_w \times n_h$ image patches, then total $n_t \times n_w \times n_h$ patches contextualize from each other using Transformer Encoder.

 $(n_{\rm h}: \text{ # rows}, n_{\rm w}: \text{ # columns}, n_{\rm t}: \text{ # frames})$

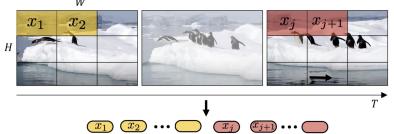
• **Computational overhead** is a serious issue with this naive extension.

• Attention overhead: $O(n_h^2 n_w^2 n_t^2)$

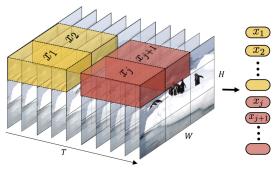


https://arxiv.org/pdf/2103.15691.pdf

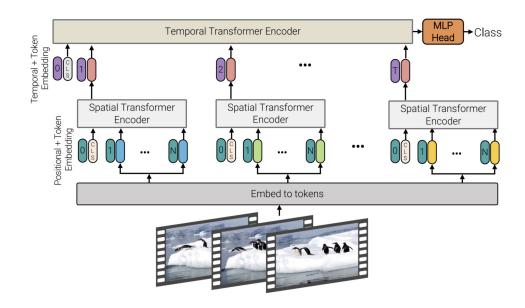
- Basic ideas to reduce computational overhead
 - Uniformly sampling some frames across the time domain (Uniform frame sampling)
 e.g., one frame per every 2 frames



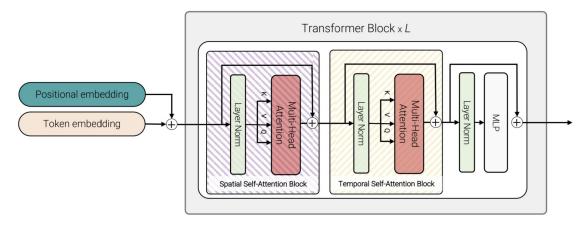
• Extracting non-overlapping, spatio-temporal tubes from the input volume, and linearly projecting this (**Tubelet embedding**): fuses spatio-temporal information during tokenization.



- Factorized Encoder (Model 2):
 - Spatial encoder and temporal encoder are **sequentially separated**.
 - First, only spatial interactions are contextualized through Spatial Transformer Encoder (=ViT).
 - Then, each frame is encoded to a single embedding, fed into the Temporal Transformer Encoder.
 - Complexity: $O(n_h^2 n_w^2 + n_t^2)$



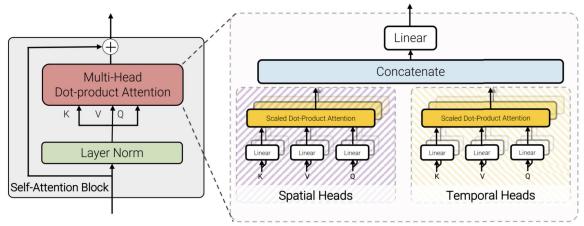
- Factorized Self-Attention (Model 3)
 - Contains the same number of Transformer layers as the naive model (Model 1).
 - Instead of computing multi-headed self-attention across all pairs of tokens,
 - First only compute self-attention **spatially** (among all tokens extracted from the same temporal index),
 - then temporally (among all tokens extracted from the same spatial index)
 - No classification token ([CLS]) is used to avoid ambiguities.



- Factorized Dot-Product Attention (Model 4)
 - Recall that the Transformer is based on **multihead** attentions.
 - Half of the attention heads are designed to operate with keys and values from same spatial indices: $\mathbf{K}_s, \mathbf{V}_s \in \mathbb{R}^{n_h \cdot n_w \times d}$ $\mathbf{Y}_s = \operatorname{Attention}(\mathbf{Q}, \mathbf{K}_s, \mathbf{V}_s)$
 - The other half operate with keys and values from same temporal indices:

$$\mathbf{K}_t, \mathbf{V}_t \in \mathbb{R}^{n_t \times d}$$
 $\mathbf{Y}_t = \operatorname{Attention}(\mathbf{Q}, \mathbf{K}_t, \mathbf{V}_t)$

 $\circ \quad \mathbf{Y} = \operatorname{Concat}(\mathbf{Y}_s, \mathbf{Y}_t) \mathbf{W}_O$



ViViT: Experiments and Discussion

- Dataset sparsity problem:
 - Recall that **ViT requires extremely large dataset** to perform well. \bigcirc
 - There's **no video dataset** at such a scale 😟 \bigcirc
 - They **initialized with ViT**, pre-trained on large image dataset. Ο
- Comparing Model 1, 2, 3, 4:
 - The naive model (Model 1) performs the best, but most expensive. 0
 - Model 2 is a good trade-off, with fastest runtime and near-the-best accuracy. Ο

	K400	EK	FLOPs $(\times 10^9)$	Params $(\times 10^6)$	Runtime (ms)	
Model 1: Spatio-temporal Model 2: Fact. encoder Model 3: Fact. self-attention Model 4: Fact. dot product	80.0 78.8 77.4 76.3	43.1 43.7 39.1 39.5	455.2 284.4 372.3 277.1	88.9 115.1 117.3 88.9	58.9 17.4 31.7 22.9	Best performance Most efficient
Model 2: Ave. pool baseline	75.8	38.8	283.9	86.7	17.3	
al University	То асси	p 1 Iracy				

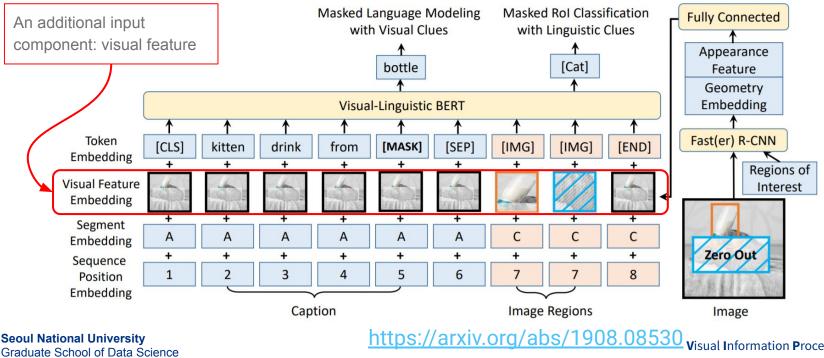
Transformer-based Image-Text Models

Motivating Questions

- How can we apply Transformers to learn image-text correspondence?
 - Text is sequential in nature.
 - **Q**: How can we represent an image into a sequence?
- How can we collect (image, text) pairs?
 - \circ \quad Think about what correlation we want to learn from.
 - Direct and explicit description of an image may need human raters.
 - **Q**: Any indirect way to collect noisy labels?
 - Image search query + clicked images
 - An image and text co-existed in a web page
 - Video thumbnail + the video's title
 - Images and captions posted on SNS
 - **...**

VL-BERT

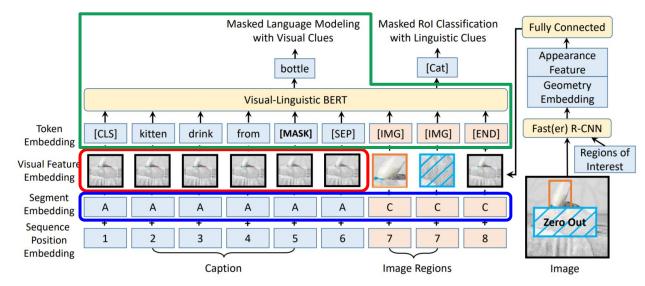
- Applied the Transformer to model image-text (caption) correspondence.
 - Training example: an image and its caption (a sentence) pair, instead of two sentences. 0
 - For VQA application, an image and two sentences (question, answer). Ο



VL-BERT

The **text** part is almost identical to the original BERT, except

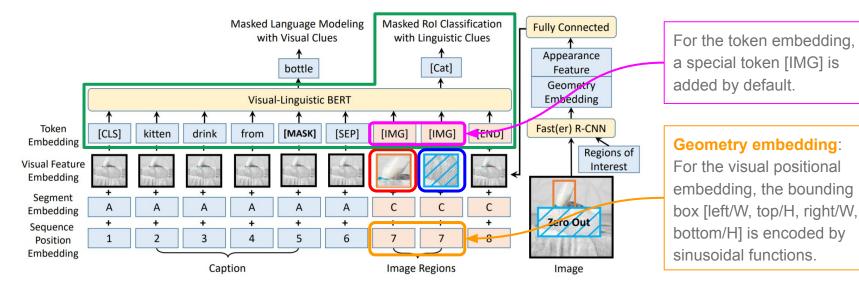
- For the visual feature, the entire image feature is added by default.
- Segment embedding: A is for text, B is for another text (for VQA), C is for image.
- MLM itself is the same, but it now **attends the visual tokens** as well as other words.



VL-BERT

The **image** part is new!

- Using Fast(er) R-CNN, Region of Interests are extracted, and each of them is treated as a token.
- Similarly to MLM, some Rols are zeroed out.
- Masked Rol classification: classify the zeroed out region based on context (visual + linguistic).



VL-BERT: Downstream Tasks

- Visual Question Answering (VQA)
 - Given a natural image, an open-ended or multiple-choice perception question is asked.
 - The model needs to generate the correct answer.

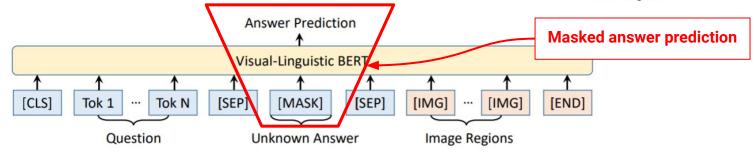
Q: What days might I most commonly go to this building? A: Sunday

Q: Is this photo from the 50's or the 90's? A: 50's

Q: What phylum does this animal belong to?A: chordate, chordata

Q: How many chromosomes do these creatures have? A: 23

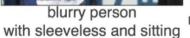
Q: What is the warmest outdoor temperature at which this kind of weather can happen? A: 32 degrees



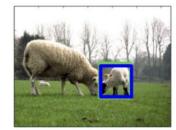
Visual Information Processing Lab. 38

VL-BERT: Downstream Tasks

- Referring Expression Comprehension
 - A natural language phrase to an object in an image (referring expression) is given.
 - The model needs to locate the target object.

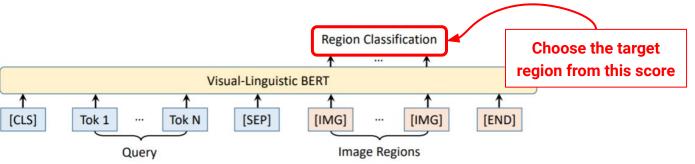


man in full view in all black



small one grazing

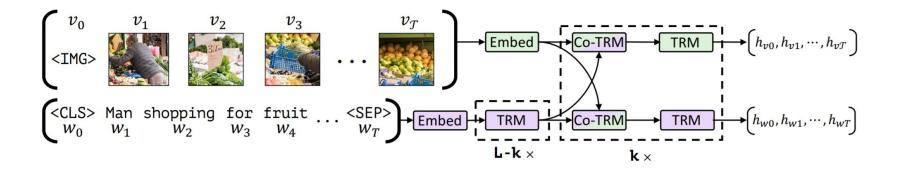
books about bears



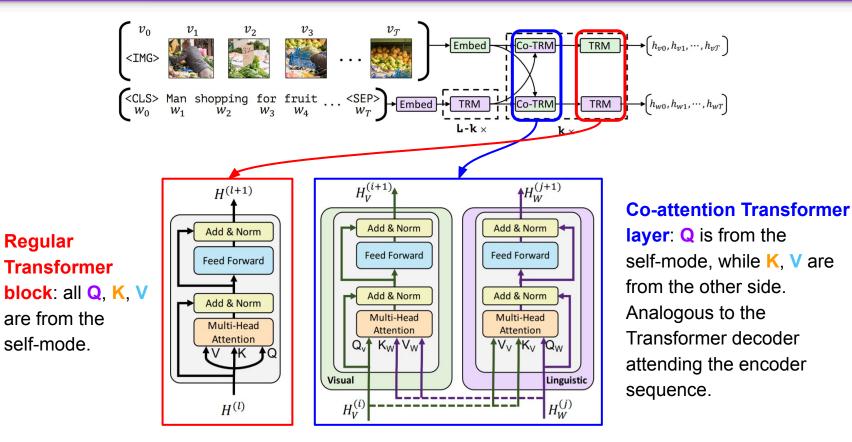
Visual Information Processing Lab. 39

Vilbert

- Similar to VL-BERT, but added cross-modal attention within the BERT.
 - Image region features are extracted using a pre-trained Faster R-CNN model.
 - Text tower is embedded using a pre-trained BERT model, then goes through additional Transformer blocks. No such additional tuning on visual side.
 - Each tower repeatedly attends **cross-modal** and it**self**, similarly to the Transformer decoder.
- https://arxiv.org/pdf/1908.02265.pdf



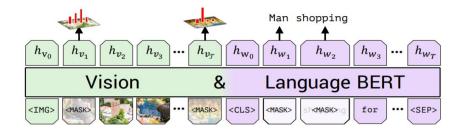
VilBERT: Co-attention Transformer

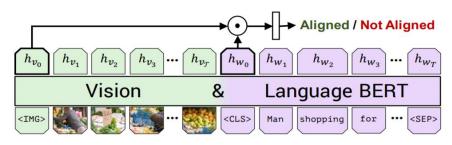


VilBERT: Training

- Masked multi-modal modelling task
 - Analogous to **MLM** in BERT.
 - For the image regions, the **distribution over semantic classes** is predicted.
 - **Prediction of the Faster R-CNN** model is used as the ground truth.
 - The text part is same as original MLM; **attending on visual** signals as well.

- Multi-modal alignment task
 - Analogous to **NSP** in BERT.
 - The model takes (image, text) pair as an input, and multiple image patches are extracted and fed.
 - The output embeddings corresponding to [IMG] and [CLS] are trained to represent the **entire image and sentence**.
 - Trained to classify if these are aligned or not.





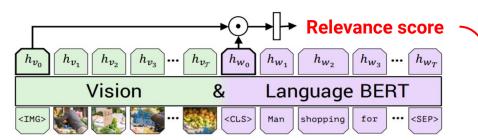
- Caption-Based Image Retrieval
 - Given a text describing an image, retrieve the most relevant image from a corpus.
 - Similar to image search on web search engine, but the query tends to be more descriptive.

The concept comes to life with a massive display of fireworks that will fill the grounds.

Happy young successful business woman in all black suit smiling at camera in the modern office.

A grey textured map with a flag of country inside isolated on white background .

New apartment buildings on the waterfront, in a residential development built for cleaner housing.



With the text query fixed, compute this score for all images in the corpus, and return the top-*k*.

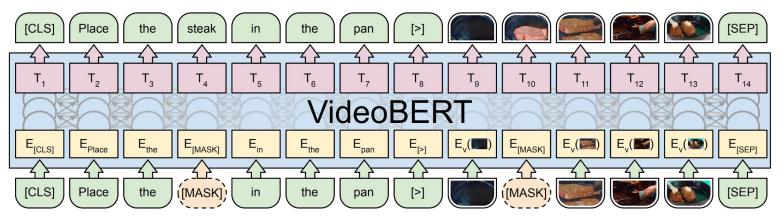
Transformer-based Video-Text Models

Motivating Questions: Revisited

- How can we apply Transformers to learn video-text correspondence?
 - Text is sequential in nature.
 - And, video is also sequential in nature!
- How can we collect (video, text) pairs?
 - Think about what correlation we want to learn from.
 - Human raters on videos are **much more costly (time, money, ...)** than on images.
 - **Q**: Any other way to collect noisy labels?
 - Video search query + clicked videos
 - A video and its title/descriptions on YouTube
 - Video and its own ASR (Automatic Speech Recognition) or uploader-provided captions
 - ...

VideoBERT

- Instead of spatial sampling in image models, frames are sampled temporally.
 - Sampled frames for every 1.5 sec
 - S3D features are extracted to represent each frame (1024-D).
- Both visual (sampled frames) and text (ASR) are from a part of a video.
 - Then, the main training task is **temporal correspondence** between the frames and ASR.
- Focused on cooking/recipe videos.
- https://arxiv.org/pdf/1904.01766.pdf

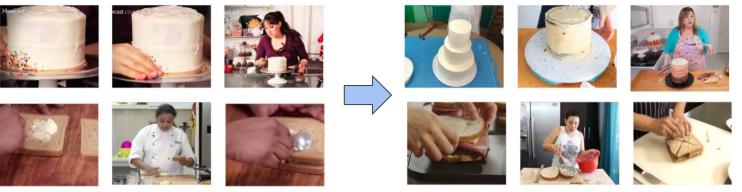


VideoBERT: Video Tokenization

- As we do not use a detection model (*e.g.*, Faster R-CNN) anymore, no labels are available for the sampled frames.
- Solution: video tokenization (similar to 'visual words')
 - **Clusters** the frames in the dataset (they used hierarchical k-means).
 - Each frame is now represented as another frame **closest to the centroid** of its cluster.
 - The representative may look different visually, but **preserve semantics**.

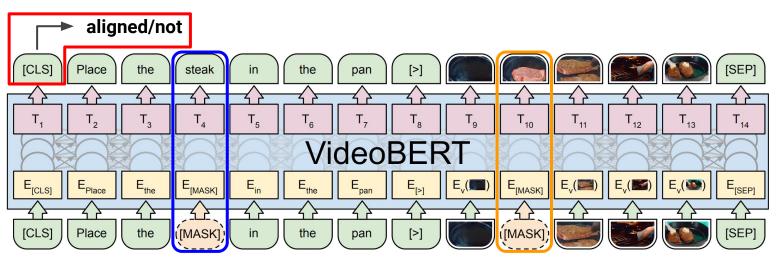
Original:

Their representative:



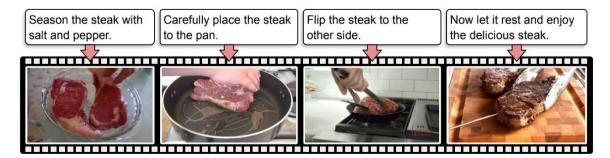
VideoBERT: Training

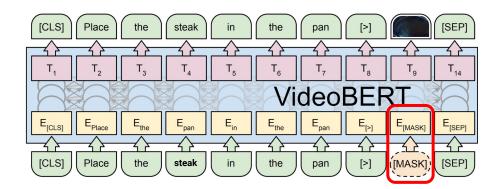
- **Linguistic-visual alignment task**: from the final hidden state of [CLS] token, the model classifies if the input video clip and text is temporally aligned or not.
- Masked language modeling (MLM): same as BERT
- Masked frame modeling (MFM): similar to MLM; learning to classify the image cluster.



Recipe Illustration

• Conditioned on an input sentence, **generate a video token for visualization** (w/ centroids).

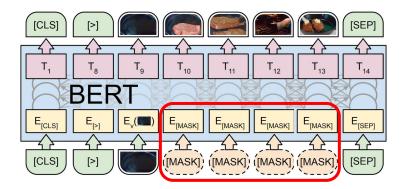




- Future frame prediction
 - Providing one (or a few more) input video token(s) and add some more masked future tokens.

Possible futures: put into an oven, turned into brownie or cupcake...

Input:



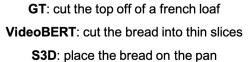
- Zero-shot action classification
 - Force VideoBERT to "speak" by providing a template sentence but mask out verbs and nouns:
 "Now let me show you how to [MASK] the [MASK]."

Top verbs: make, assemble, prepare Top nouns: pizza, sauce, pasta **Top verbs**: make, do, pour **Top nouns**: cocktail, drink, glass

- Video captioning
 - Mask all the words in the text part. The model will generate a sentence based on the visual signal.

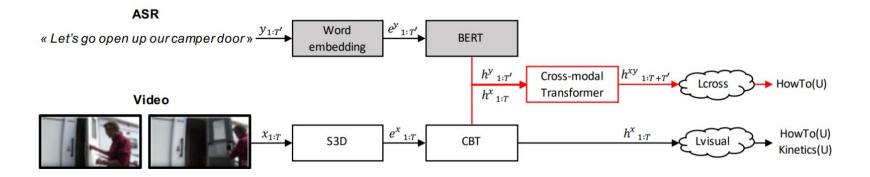
GT: add some chopped basil leaves into it VideoBERT: chop the basil and add to the bowl

S3D: cut the tomatoes into thin slices

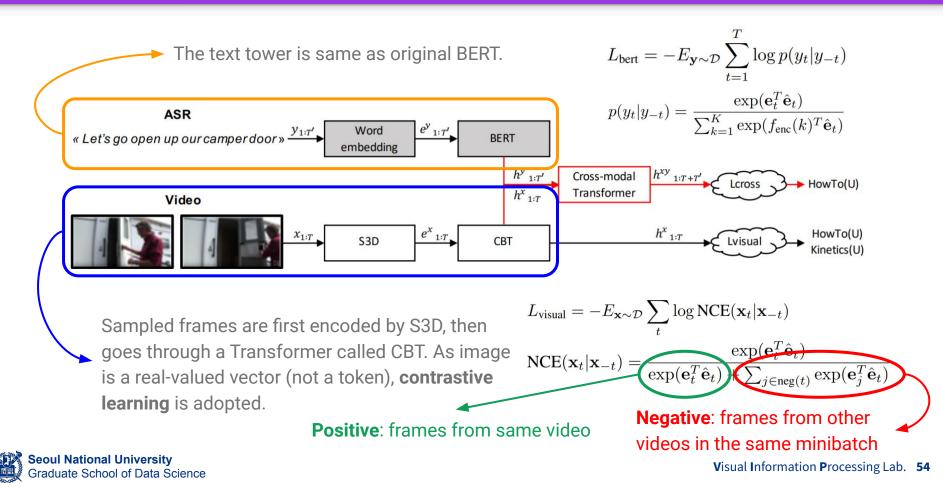


CBT

- Contrastive Bidirectional Transformer
- Visual and text towers are trained **separately with unimodal BERTs**, followed by **cross-modal Transformer** to learn multimodal correspondence.
 - *c.f.*, VilBERT mixed cross-modal and unimodal attention repeatedly.
- https://arxiv.org/pdf/1906.05743.pdf



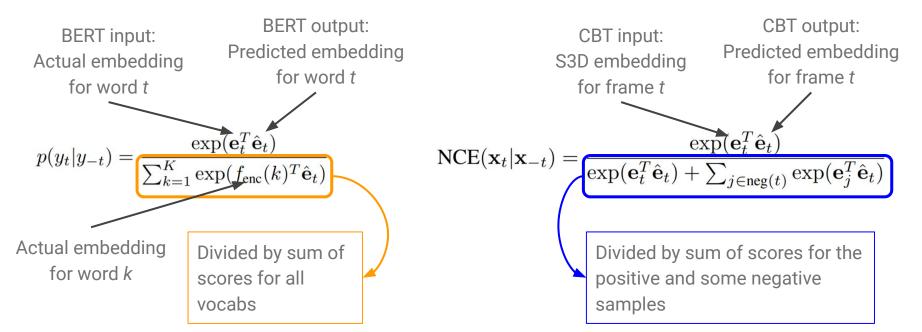
CBT: Model Structure



CBT: Loss Functions

BERT (Softmax): encourages the model to learn to identify the correct token (given the context) compared to <u>all vocabs</u>.

CBT (NCE): encourages the model to learn to identify the correct frame (given the context) compared to <u>a set of negative distractors</u>.



CBT: Summary

- Given a sequence of frames $\mathbf{x} = \{x_1, ..., x_m\}$ and of ASR tokens $\mathbf{y} = \{y_1, ..., y_n\}$, the Cross-modal Transformer learns their correspondence/relevance/alignment.
 - **x** and **y** are not necessarily aligned at frame/token level.
 - Thus, we try to maximize mutual information (MI) at the **sequence level**.
- x and y are concatenated and fed into a cross-modal Transformer (e.g., VideoBERT), producing output embedding sequence h = {h₁, ..., h_{m+n}}.
 - This Transformer is also trained using the **NCE loss**.
 - Lastly, **h** goes through a shallow MLP to compute correspondence (MI) score.
- The entire model is trained end-to-end, weighted-summing all three losses (BERT, CBT, Cross-modal).
 - End-to-end training was not possible with VideoBERT, due to the frame clustering.
 - Now, with NCE loss, the entire training can be done end-to-end.

Hammer

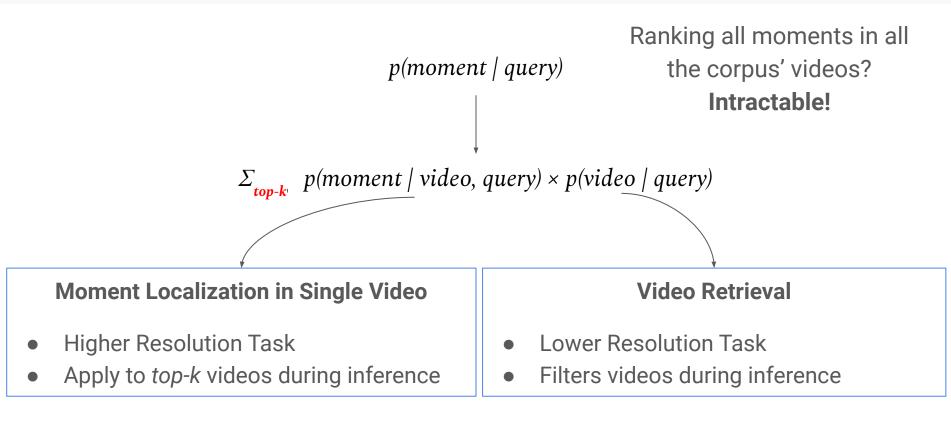
- Target task: Moment localization in Video Corpus (MLVC)
 - Moment: A short clip (or segment) in a video that contains a semantically meaningful sequence.
 - **Moment Localization in Single Video (MLSV)** task: Given a video, find the **time window of an event** that is described by the given **natural language query**.
 - Moment Localization in Video Corpus (MLVC) task: Find a video segment that corresponds to a text query from a corpus of untrimmed and unsegmented videos.
- https://arxiv.org/pdf/2011.09046.pdf

How to Butterfly a Chicken Breast

How to Butterfly a Chicken | Food Network

Easy Butterfly Chicken Recipe

Hammer: Two-Stage Approach



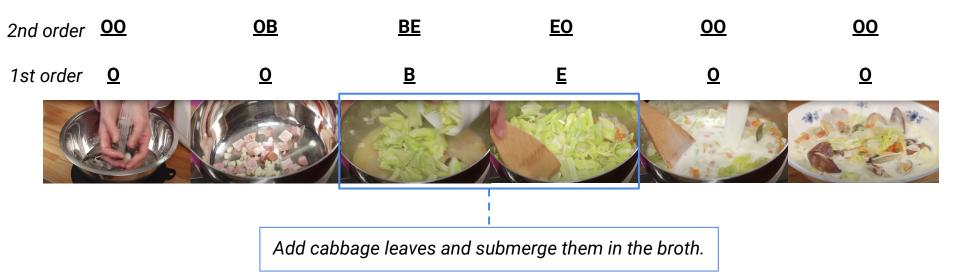
Hammer: Training

• Video retrieval task: Contrastive Learning of Video & Text Matching



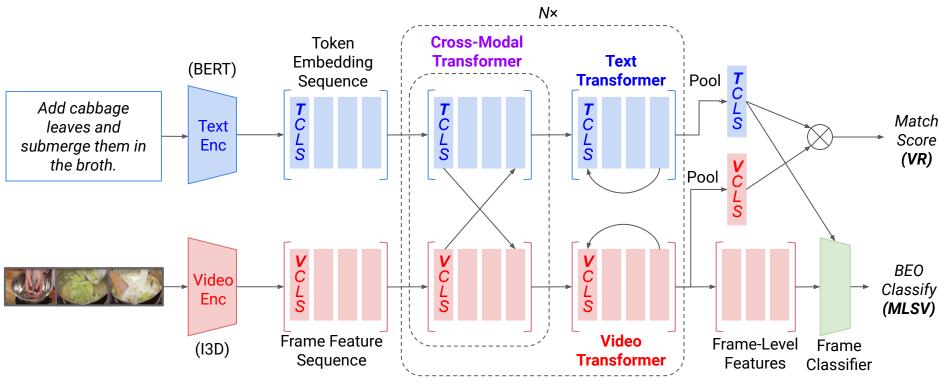
Hammer: Training

- Temporal localization task:
 - 3-way classification at frame-level (<u>B</u>egin <u>E</u>nd <u>O</u>ther)
 - Higher-order *n*-grams work slightly better.



Hammer: Architecture

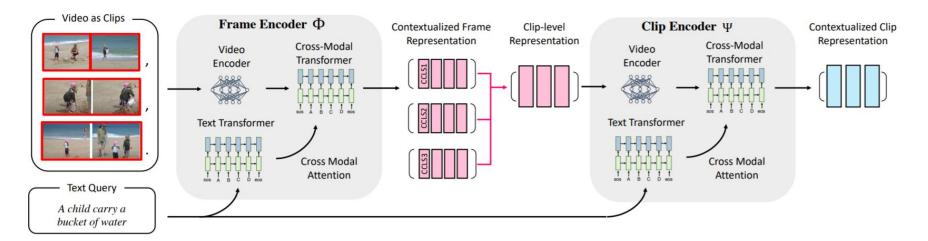
• Backbone model: Cross-modal Transformer (similar to VilBERT)



Seoul National University Graduate School of Data Science

Hammer: Architecture

- Hierarchical visual encoders:
 - Aligning text and video segments requires fine-grained spatio-temporal understanding at different time scales.
 - \circ Frame encoder: sequence of frames + text query \rightarrow clip representation
 - \circ Clip encoder: sequence of clips + text query \rightarrow video representation
 - Extendable to 3rd or higher levels, if we want to deal with longer videos.



Hammer: Examples

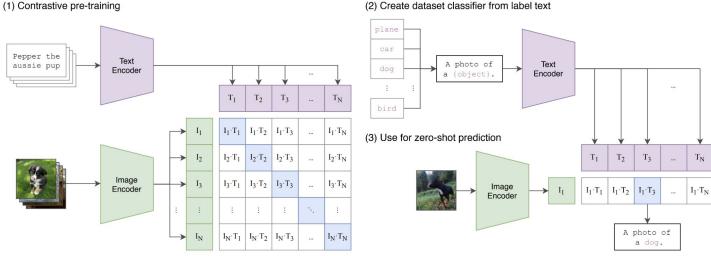
Query: The video ends with a black and green background of the words Polo Tips in green and a green image of a person on a horse holding a stick.

Large-scale Multimodal Pre-training

|||P||

- "A multimodal metric learning using large-scale paired dataset"
 - At training: Jointly trains an image encoder and a text encoder to predict the correct pairings of a Ο batch of (image, text) training examples.
 - <u>At testing</u>: the learned text encoder synthesizes a zero-shot linear classifier by embedding the Ο names or descriptions of the target dataset's classes.

https://arxiv.org/pdf/2103.00020.pdf



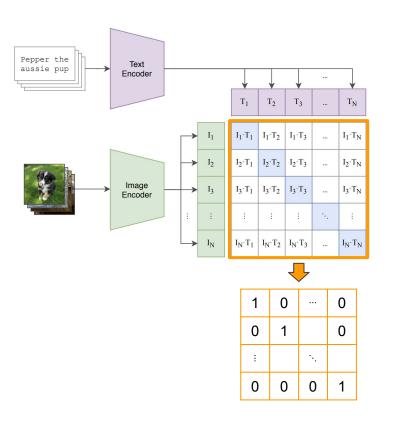
(2) Create dataset classifier from label text

Seoul National University Graduate School of Data Science

Visual Information Processing Lab. 65

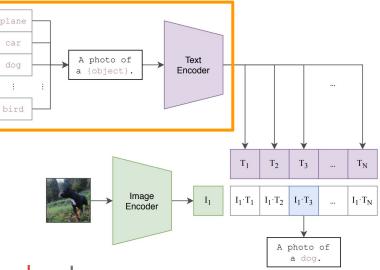
CLIP: Training

- Given *N* (batch size) image-text pairs, the training procedure
 - **Maximizes** similarity (dot-product) between the true pairs $(I_1, T_1), (I_2, T_2), ..., (I_N, T_N)$,
 - while **minimizes** similarity (dot-product) between all other pairs (I_1, T_2) , (I_2, T_1) , ... in the batch.
- Mathematically, identical to making the outer-product of image and text matrices closer to an identity matrix.
- Same as the contrastive learning, or InfoNCE loss we learned in the last lecture.



CLIP: Inference

- To make this as a classifier, we use a text prompt: "A photo of a _____"
 - Because the model is knowledgeable of natural language (stronger than class terms), it can easily adapt to such a prompt.
 - The image encoding is also already aligned with the semantics represented by the text, so an inner-product with the image and corresponding prompt will be larger.
- The text and image encoders are useful themselves!
 - Image embedding is semantically powered by language pairs.
 - Text embedding is also powered by visual cues.
 - Common use cases:
 - Embed a text, then retrieve the closest *k* images / videos.
 - Embed an image, then select / generate a sentence describing it.



CLIP: Text Retrieval Examples

Seoul National University Graduate School of Data Science

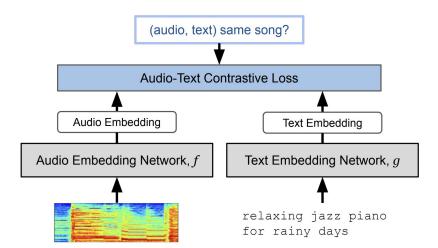
Visual Information Processing Lab. 68

MuLan

- Music-Language matching: Audio / Music version of CLIP
- Training: a batch-wise contrastive learning similar to CLIP

$$\sum_{i=1}^{B} -\log\left[\frac{h[f(\mathbf{x}^{(i)}), g(\mathbf{t}^{(i)})]}{\sum\limits_{j \neq i} h[f(\mathbf{x}^{(i)}), g(\mathbf{t}^{(j)})] + h[f(\mathbf{x}^{(j)}), g(\mathbf{t}^{(i)})]}\right]$$

- Text is collected from a webpage containing music content.
- E.g., music title, description, general web pages,



https://arxiv.org/pdf/2208.12415.pdf

. . .