A B C D E F G H I K L M N O P Q R S T U V W X

A

absoluteSum() - Method in class prea.data.structure.DenseVector
Sum of absolute value of every element in the vector.
absoluteSum() - Method in class prea.data.structure.SparseVector
Sum of absolute value of every element in the vector.
add(double) - Method in class prea.data.structure.DenseMatrix
Scalar addition.
add(double) - Method in class prea.data.structure.DenseVector
Scalar addition operator.
add(double) - Method in class prea.data.structure.SparseMatrix
Scalar addition.
add(double) - Method in class prea.data.structure.SparseVector
Scalar addition operator.
algorithmCode - Static variable in class prea.main.Prea
The code for an algorithm which will run.
algorithmParameters - Static variable in class prea.main.Prea
Parameter list for the algorithm to run.
assign - Variable in class prea.data.splitter.KfoldCrossValidation
 
ASYMM_LOSS - Static variable in class prea.recommender.etc.RankBased
Asymmetric loss function
asymmetricLoss - Variable in class prea.util.EvaluationMetrics
Asymmetric Loss
asymmetricLoss(double, double, double, double) - Static method in class prea.util.Loss
Asymmetric loss matrix/function.
ATOX - Static variable in class prea.recommender.etc.NonlinearPMF
 
average() - Method in class prea.data.structure.DenseMatrix
Average of every element.
average() - Method in class prea.data.structure.DenseVector
Average of every element.
average() - Method in class prea.data.structure.SparseMatrix
Average of every element.
average() - Method in class prea.data.structure.SparseVector
Average of every element.
Average - Class in prea.recommender.baseline
The class implementing a baseline, predicting by overall average of training set ratings.
Average(int, int, double, double) - Constructor for class prea.recommender.baseline.Average
Construct a constant model with the given data.

A B C D E F G H I K L M N O P Q R S T U V W X