A B C D E F G H I K L M N O P Q R S T U V W X

E

estimation(int, int, int[], int, double[], int) - Method in class prea.recommender.memory.ItemBased
Estimate a rating based on neighborhood data.
estimation(int, int, int[], int, double[], int) - Method in class prea.recommender.memory.UserBased
Estimate a rating based on neighborhood data.
evaluate(SparseMatrix) - Method in class prea.recommender.baseline.BaselineRecommender
Evaluate the designated algorithm with the given test data.
evaluate(SparseMatrix) - Method in class prea.recommender.CustomRecommender
Evaluate the designated algorithm with the given test data.
evaluate(SparseMatrix) - Method in class prea.recommender.etc.FastNPCA
Evaluate the designated algorithm with the given test data.
evaluate(SparseMatrix) - Method in class prea.recommender.etc.NonlinearPMF
Evaluate the designated algorithm with the given test data.
evaluate(SparseMatrix) - Method in class prea.recommender.etc.RankBased
Evaluate the rank-based CF algorithm with the given probabilites and loss function.
evaluate(SparseMatrix) - Method in class prea.recommender.etc.SlopeOne
Evaluate the designated algorithm with the given test data.
evaluate(SparseMatrix) - Method in class prea.recommender.matrix.MatrixFactorizationRecommender
Evaluate the designated algorithm with the given test data.
evaluate(SparseMatrix) - Method in class prea.recommender.memory.ItemBased
Evaluate the designated algorithm with the given test data.
evaluate(SparseMatrix) - Method in class prea.recommender.memory.UserBased
Evaluate the designated algorithm with the given test data.
evaluate(SparseMatrix) - Method in interface prea.recommender.Recommender
Interface of evaluation method.
EvaluationMetrics - Class in prea.util
This is a unified class providing evaluation metrics, including comparison of predicted ratings and rank-based metrics, etc.
EvaluationMetrics(SparseMatrix, SparseMatrix, double, double) - Constructor for class prea.util.EvaluationMetrics
Standard constructor for EvaluationMetrics class.
evaluationMode - Static variable in class prea.main.Prea
Evaluation mode
exp(double) - Method in class prea.data.structure.DenseMatrix
Exponential of a given constant.
exp(double) - Method in class prea.data.structure.DenseVector
Exponential of a given constant.
exp(double) - Method in class prea.data.structure.SparseMatrix
Exponential of a given constant.
exp(double) - Method in class prea.data.structure.SparseVector
Exponential of a given constant.
expTransform(DenseVector, int) - Method in class prea.recommender.etc.NonlinearPMF
Transform a vector by log function, exponential function or linear function.

A B C D E F G H I K L M N O P Q R S T U V W X