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Abstract

Estimating the energetic properties of molecular
systems is a critical task in material design. Ma-
chine learning has shown remarkable promise on
this task over classical force fields, but a fully data-
driven approach suffers from limited labeled data;
not just the amount of available data lacks, but the
distribution of labeled examples is highly skewed
to stable states. In this work, we propose a molec-
ular representation learning method that extrapo-
lates well beyond the training distribution, powered
by physics-driven parameter estimation from clas-
sical energy equations and self-supervised learning
inspired by masked language modeling. To ensure
the reliability of the proposed model, we intro-
duce a series of novel evaluation schemes in multi-
faceted ways, beyond the energy or force accuracy
that has been dominantly used. From extensive
experiments, we demonstrate that the proposed
method is effective in discovering molecular struc-
tures, outperforming other baselines. Furthermore,
we extrapolate it to the chemical reaction pathways
beyond stable states, taking a step towards physi-
cally reliable molecular representation learning.

1 INTRODUCTION

Material simulation is a vast research field that spans un-
derstanding material’s optimal structure, simulating micro-
scopic dynamics depending on time, temperature, and pres-
sure beyond the experimental resolution, and reducing trial-
error loops in designing new materials. The foundation of
this simulation is defining the energy at the atomic level con-
sidering interactions between numerous atoms, so-called
many-body problem. Advances in theory and computational
capability, e.g., Density Functional Theory (DFT; Kohn and
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Sham [1965], Parr [1980]), have led to higher predictability
of energy with greater accuracy. Despite the tremendous
advances, however, many-body interactions between atoms
have exponential complexity over the number of atoms, and
it has been a grand challenge in computational material sim-
ulations to reduce computational cost while improving the
prediction accuracy.

Recently, machine learning approaches have drawn atten-
tion as an alternative to classical force fields that rely on
physical principles and human intuition. However, pure data-
driven approaches often suffer from the limited amount and
quality of available data. Sometimes one may benefit from
simulations, which provide data at a larger scale than ac-
tual experiments. It still requires, however, expensive and
time-consuming DFT or molecular dynamics (MD) simula-
tions, accompanying by significant human analysis due to
our limited knowledge.

Furthermore, for some specific system of interest (e.g., a
drug candidate), it is often essential to accurately estimate
the molecular dynamics across the reaction pathway, not
just the stable states before and after the reaction. Molecular
structure data, however, are vastly available only at their
stable states, while it is extremely costly to collect data on
their transition states during a chemical reaction. Therefore,
it is vital to have strategies for building a stable model that
extrapolates well from stable structures to unstable interme-
diate ones. If we can train a physically-reasonable model
that performs reasonably even at unstable states from a
stable-state-only dataset, we may be able to transfer it to the
reaction pathway reconstruction problem, which severely
suffers from data scarcity.

Another challenge in ML-based molecular modeling is val-
idation. It is often challenging to verify if the model truly
learns physically reasonable potential energy surface, which
is essential for comprehending molecular structural dynam-
ics and constructing chemical reaction pathways. In previ-
ous works, energy estimation accuracy in a stable state has
been commonly used, expecting that discovering the actual
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potential energy surface is needed for the model to precisely
estimate its energy. However, since the test cases are con-
fined to stable states, it is questionable whether the model
captures the true geometry of the potential energy surface,
or has merely fitted to the energy values. In other words,
the meta-stability of the potential energy surface cannot be
verified solely through the stable-state energy estimation.
Therefore, additional metrics and evaluation schemes that
compensate the current scheme would benefit the commu-
nity by providing crosscheck validity of existing and future
methods.

In this paper, we tackle the aforementioned challenges in
molecular structure modeling as follows:

• A natural direction to tackle the data scarcity issue in
data-driven models is to incorporate as much physical
intuitions and knowledge as possible. In this paper, we
propose a physics-empowered hybrid model for molecu-
lar representation learning, which combines the expres-
sive power of a Transformer [Vaswani et al., 2017] with
classical force-field-style equations.

• To build a physically reliable model that generalizes well
beyond the steady-state-only training data, we design
a self-supervised learning approach that the model can
learn underlying chemical rules without overly relying
on scarcely available labels provided only at stable states.
To be specific, we propose an effective masked atomic
modeling idea, inspired by masked language modeling.

• We examine the possibility of transfer learning from
our model trained only on stable structures to chemical
reaction pathways, which requires energy estimation of
molecules at transition states, unseen during the training
at all. A general understanding of the physical rules
would be essential for this challenging generalization
problem.

• We design a series of novel evaluation schemes to mea-
sure reliability of the molecular potential energy surface
learned by the model. To be specific, we propose to re-
cover molecular structure from perturbation, to reassem-
ble molecules from broken bonds, and to predict the
entire chemical reaction pathway mentioned above. To-
gether with the existing energy estimation accuracy, our
evaluation methods verify the models in multifaceted
ways, preventing from overfitting to a single objective.

2 RELATED WORK

ML potentials can be categorized into three types based
on model complexity and history: kernel-based descriptors,
fixed atomic descriptors, and learnable descriptors.

Kernel-based Methods. Kernel-regression-based potentials
are mainly applied to a single atom or a few elemental
species, where the kernel method is one of the lightest

forms. Gaussian approximation potential (GAP; Bartók et al.
[2010]), smooth overlap of atomic potential (SOAP; Bartók
et al. [2013]), and spectral neighbor analysis potential
(SNAP; Chen et al. [2017]) are representative examples.
These models can be trained on a small amount of data, but
it is difficult to be extended to chemically complex cases.

Fixed descriptors. Behler and Parrinello [2007] uses an
atom-centered symmetry function to describe the local en-
vironment of each atom and passes each descriptor value
to the simple feed-forward network to map the total en-
ergy. They estimate the energy for each descriptor from
the distance and angle information between paired atoms
within a specific cutoff. Behler-Parinello neural-net (BPNN;
Behler and Parrinello [2007]) series are the representative
practical examples that increase model complexity for high-
dimensional Potential Energy Surface (PES) compared to
previous kernel-based methods. BPNN was the first realistic
attempt to decompose the total energy as a sum of each
individual atom’s energy. A fundamental limitation of this
approach is that fixed descriptors are insufficient to cover
complex spatial patterns (e.g., ring structures, bond types, or
chemical functional groups), limiting the knowledge trans-
ferability between different molecules and atoms. Also, the
original symmetry function does not reflect the chemical en-
vironment outside the cutoff at all [Kulichenko et al., 2021].
Despite these limitations, it achieved accuracy that no previ-
ous classical force field reached. It has been shown to work
for systems with many atoms in a dense system with a few
species [Behler, 2015, Kulichenko et al., 2021].

Deep Learning Models. Recently, deep neural networks
have been actively applied to construct surrogate poten-
tials. Most models in this category allow the chemical en-
vironmental information can be transferred between atoms
over a greater distance than traditional models, providing
a higher degree of freedom. ANI [Smith et al., 2017] ex-
tends BPNN by modifying its angular function. Message
Passing Neural Network (MPNN) [Gilmer et al., 2017] is
specialized in learning from a graph-structured representa-
tion by updating hidden node states using messages from
adjacent nodes. MPNN significantly improves accuracy in
molecule-related tasks on QM9 dataset [Ruddigkeit et al.,
2012, Reymond, 2015, Ramakrishnan et al., 2014], while
the increased model capability nest a risk of overfitting
[Hawkins, 2004, Zuo et al., 2020]. Since then, various graph-
based approaches [Schütt et al., 2018, Gasteiger et al., 2020,
Unke and Meuwly, 2019] have been proposed. Recently,
the Transformer [Vaswani et al., 2017] is applied to this
problem [Cho et al., 2021, Thölke and Fabritiis, 2022], fol-
lowing its success on natural language processing Devlin
et al. [2019] and computer vision [Dosovitskiy et al., 2021,
Lu et al., 2019, Sun et al., 2019].

3 THE PROPOSED METHOD
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3.1 PROBLEM DEFINITION AND NOTATIONS

Given a molecular structure graph G = (V, E), where V is a
set of N atoms constructing the molecule and E is a set of
bonds between a pair of atoms with direct interaction, we
aim at a regression problem to estimate the energyEmol ∈ R
of the molecule. The total energy at the molecule level Emol
is decomposed into the atomic-level energies, denoted by
Ei for each atom i = 1, ..., N , where Emol =

∑
iEi. Each

atom i in the molecule is represented by its atomic number
zi ∈ R, its position pi ∈ R3 in Cartesian coordinates, and
electro-negativity nzi ∈ R of the atom type. We denote the
pairwise L2 distance matrix D ∈ RN×N between atoms,
computed from {pi}. Here, the element di,j is the radial
distance between two atoms i and j. Adjacency matrix that
represents bond information of the molecule denoted by
A ∈ {0, 1}N×N .

3.2 ATOM REPRESENTATIONS

We represent each atom based on its atom-wise characteris-
tics and relation with neighboring atoms in the molecule.

Atom-wise Representation. Atom i is represented as an
embedding x(self)

i ∈ Rd based on its type zi, concatenated
with its electro-negativity nzi :

x(self)
i = [E(zi);nzi ], (1)

where E is an embedding layer.

Radial Basis Functions. Inspired by the localized orbitals
in DFT, we start with a simple Gaussian basis to represent
the relationship between two atoms. For a pair of two atoms
i and j in the molecule, we assign nb basis functions follow-
ing Unke and Meuwly [2019]:

ψi,j,k(di,j) ≡ ϕ(di,j) exp
{
−βzi,k (exp(−di,j)− µzi,k)

2
}

(2)
where i = 1, ..., N is the center atom index, j = 1, ..., N
is a neighboring atom index, zi is the atomic number of
atom i, and k = 1, 2, ..., nb denotes the index of the basis
for each center atom type zi. For a predefined distance
threshold τ , ϕ(d) = 1 if d < τ and 0 otherwise. With
a reasonable nb, we can enhance the expressibility of the
model, generating more accurate potentials. βzi,k and µzi,k
are the learnable parameters for each atom type zi, which
control the center and width of each individual basis. Finally,
a cosine envelope function [Thölke and Fabritiis, 2022]
ϕ(di,j) is applied to guarantee continuity at the cutoff edges,
i.e., ∂ψ(d)

∂d |d=τ = 0:

ϕ(di,j) =

{
1
2
(cos(

πdi,j
τ

) + 1) if 0 ≤ di,j ≤ τ ,
0 otherwise.

(3)

Neighbor Embedding. We adopt the idea of neighbor em-
bedding [Thölke and Fabritiis, 2022], which represents rel-
ative information from nearby atoms under the distance of

some threshold τ , denoted by x(neighbor) ∈ Rd:

x(neighbor)
i =

nb∑
j=1

U
[
x(self)
j �Vψ0

i,j

]
, (4)

where ψi,j = [ψi,j,1, ..., ψi,j,nb
] ∈ Rnb , V ∈ Rd×nb is a

projection matrix from radial basis functions to the atomic
embedding space, and � indicates element-wise multipli-
cation. U ∈ Rd×d is another linear projection matrix. As a
result, x(neighbor)

i ∈ Rd, the neighbor embedding of atom i,
is in the same atomic embedding space. For each atom i, we
combine the atomic and neighbor embeddings, then they are
projected back to the same dimensionality by W ∈ Rd×2d.
That is, xi = W[x(self)

i ;x(neighbor)
i ].

3.3 OUR TRANSFORMER MODEL

As illustrated in Fig. 1, our model is based on a Transformer.
Given a molecule as a set of its N atoms, encoded as xi ∈
Rd for i = 1, ..., N , our model adds an additional [CLS]
token, denoted by x0 ∈ Rd, to explicitly learn to represent
the overall molecule embedding. On this input sequence,
the model stacks L Molecular Attention Blocks (MAB) to
contextualize each atom representation across the molecule
(within the cutoff distance τ ). The atom embedding after
` = 0, ..., L stages of the MABs is denoted by x

(`)
i . After L

blocks, the final sequence of atomic embeddings {x(L)
i } are

produced.

From this, we estimate the overall molecule-level energy
from them in two popular ways in Transformers. First,
we predict the atom-level energy Ei for atom i by pass-
ing x

(L)
i through an MLP. That is, Êi = fatom(x

(L)
i ), where

fatom : Rd → R is an atom-level energy regressor, and then,
summation over all atoms i = 1, ..., L gives the molecule-
level energy; that is, Êmol =

∑N
i=1 Êi. Another approach

is directly computing the molecule-level energy from the
[CLS] by Êmol = fmol(x

(L)
0 ), where fmol : Rd → R is a

molecule-level energy regressor. Both approaches are eval-
uated in Sec. 4. In Sec. 3.4, we will introduce our main
approach for this regression to take advantage of domain
knowledge from physics.

Details on Molecular Attention Block. Each Molecular
Attention Block (MAB) at level ` takes a sequence of atomic
embeddings {x(`−1)

i : i = 0, ..., N} from the previous level.
For each atom x

(`−1)
i as query and all atoms including i as

the context (keys and values), it performs self-attention as
in Fig. 1(b). Following TorchMDNet [Thölke and Fabritiis,
2022], we modify from the vanilla Transformer [Vaswani
et al., 2017] to explicitly reflect the relation arisen from
the physical distance between two atoms i and j, in addi-
tion to the semantic relevance between them modeled by
regular Transformers. Specifically, from the radial basis
ψ0
i,j [Orr et al., 1996], we compute DK ,DV ∈ RN×N×m,

where m is the embedding dimensionality used for query,
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Figure 1: (a) Our model architecture. (b) Detailed Molecular Attention Block. (c) C2H4 example.

key, and value. An element dKi,j , dVi,j ∈ Rm represents phys-
ical tendency to attract each other between atom i and j
for key-purpose and value-purpose, respectively. These are
mapped from the radial basis function ψ0

i,j by a linear layer,
followed by SiLU [Elfwing et al., 2018] activation. This
relation is represented as Rm instead of a scalar to reflect
the dimension-wise relationship.

In addition to the changes introduced by Thölke and Fab-
ritiis [2022], we additionally feed the adjacency matrix
A ∈ {0, 1}N×N , followed by a linear layer and SiLU ac-
tivation. This A-mask is multiplied element-wise with the
inferred attention weights, in order to additionally control
this semantic relevance based on physical adjacency. For in-
stance, two atoms that are far away will be likely multiplied
with a low value, reducing its relationship even if semantic
relevance is estimated high. This part is optional, and we
provide an ablation study in Sec. 4.

3.4 PHYSICS-DRIVEN PARAMETRIC ENERGY
PREDICTION

Instead of directly regressing to the atom or molecule energy
as described in Sec. 3.3, we propose to design a parametric
model that reflects physical insights. For this formulation,
we use a form that simultaneously reflects the repulsive and
attractive forces between two atoms i, j within the bond
energy Ei,j ; namely, Coulomb’s law and Lennard-Jones

Potential (LJP):

Ei,j = −β1
β0
di,j

+ β2

[(
β4
di,j

)2β3

− 2

(
β4
di,j

)β3]
. (5)

β0 corresponds to the influence of charges (qiqj) between
two atoms in Coulomb potential. β4 is the equilibrium dis-
tance between atom i and j, where the repulsive and at-
tractive forces become equivalent, and thus the atom-atom
potential energy becomes zero. The energy becomes min-
imal at this point. β1 and β2 are linear coefficients for
the Coulomb and LJP parts. It is known that β3 ≈ 6
under the condition of London dispersion force [London,
1930, Cornell et al., 1995], but the repulsive equivalence
of 2β3 ≈ 12 is much more an approximate term (square of
the attractive term), so we leave β3 as an open parameter
to be learned from the data. These five parameters, denoted
by β = [β0, β1, β2, β3, β4], are estimated by a regressor
fbond : R2d → R5; that is, β̂ = fbond([xi;xj ]).

The overall molecule-level energy is calculated by the sum
of all pair-wise bond energies and the atomic self-energies;
that is, Êmol = Êbond + Êatom, where Êbond and Êatom are
defined as

Êbond =

N∑
i=1

N∑
j>i

Êi,j , and Êatom =

N∑
i=1

fatom

(
x
(L)
i

)
. (6)

We summarize what to expect from this physics-based mod-
eling as follows. First, we aim to satisfy physical conditions
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so that the model better extrapolates to unseen cases. Sec-
ond, by observing the predicted parameters, we can monitor
whether the model actually captures the known physical
properties of the molecule. Lastly, we expect the model
to predict the energy directly from Êatom if the given for-
mula is difficult to follow. In Eq. (5), for instance, if the
inter-atomic potential does not fit well with LJP, the model
assigns β3 ≈ 0, relying solely on the Coulombic potential.

The model minimizes the MSE loss between the predicted
molecule energy Êmol and its ground truth Emol; that is,
Lenergy = ‖Êmol − Emol‖2.

3.5 MASKED ATOMIC MODELING

Masked Language Modeling (MLM), originally introduced
by BERT [Devlin et al., 2019] for language modeling, has
been successfully utilized as a pre-training task for various
models [Lu et al., 2019, Sun et al., 2019, Zhang et al., 2020a].
The main idea is to randomly mask a subset of tokens and
let the model recover them from its contexts, i.e., the other
textual or visual tokens in the input sequence. This concept
naturally supports self-supervised learning as long as the
elements in the sequence are contextually relevant, requiring
no human labeling.

In this paper, we propose Masked Atomic Modeling (MAM)
in a similar spirit. All chemical materials are composed of
multiple atoms, often with more than one type. When a
majority of atoms in a valid molecule is known, a set of
possible atoms in the rest is significantly reduced when con-
sidering the properties of each atom according to the law of
chemistry, e.g., the octet rule, Lewis symbol analysis. With
MAM, we train our Transformer to discover such chemical
restrictions purely by observing a set of valid molecules in
the training examples without direct supervision.

Formally, on a sequence X ∈ RN×d with N atoms, we
randomly mask each token by a probability of ρ (we use 0.3,
twice as Devlin et al. [2019]), replacing the masked tokens
to [MASK]. The model is trained to minimize the log loss
over the masked tokens:

Lmask = − log p(X⊗m|X⊗ (1−m)), (7)

where m ∈ {0, 1}N is a binary mask vector for atoms, 1 is a
one-valued vector, and ⊗ indicates row-wise multiplication.
p is estimated by a binary classifier, where we use a two-
layer MLP.

3.6 COMBINING PHYSICAL CONSTRAINTS

Zero-Force Regularization. When a molecule is in its equi-
librium state, the net force on each atom should be at zero.
This condition may provide a strong hint for the model to
find the valid and optimal molecular structure, but this has
not been utilized well in existing studies. Thus, we addi-
tionally regularize to minimize the force, computed by the

partial gradients of the predicted energy with respect to the
3-dimensional axis (x, y, z). Formally,

Lforce =

N∑
i=1

‖F̂i‖2 =

N∑
i=1

(
∂Ei
∂x

)2

+

(
∂Ei
∂y

)2

+

(
∂Ei
∂z

)2

,

where F̂ ∈ R3 is the predicted force of atom i.

Inequality Bound Condition. A stable equilibrium struc-
ture of a molecule corresponds to the lowest energy under
the given composition. Such an optimal structure can be
found by estimating energy from the given structure, differ-
entiating it with respect to the position, and deviating the
position based on the force. Naturally, if there is any local
deviation from the optimal structure, the energy is always
higher than its ground state. This sounds obvious physically,
but a machine learning model is unaware of this and thus
its estimation may be invalid. Thereby, we apply an addi-
tional condition that the energy should be greater than the
ground state when locally deviating from the stable struc-
ture, to narrow down the solution space. During training,
small Gaussian noise with an amplitude of 0.5 Å is applied
to the optimal structure. This is implemented by an addi-
tional loss Lbound based on the energy inequality condition:

Lbound =

{
Êmol − Ê∗mol if Ê∗mol ≤ Êmol,

0 otherwise.
(8)

3.7 OVERALL OBJECTIVE

Combining all together, our model minimizes

L = Lenergy +λmaskLmask +λforceLforce +λboundLbound, (9)

where λforce, λmask, and λbound are coefficients controlling
relative importance of each loss term.

4 EXPERIMENTS AND RESULTS

We conduct experiments to answer the following questions:
Q1. How does our model perform on energy estimation com-
pared to other models? (Sec. 4.2) Q2. Do our and baseline
models truly comprehend the molecular potential energy sur-
face structure? (Sec. 4.3–4.4) Q3. How much physics-driven
constraints affect the prediction? (Sec. 4.5)

4.1 EXPERIMENTAL SETTINGS

Datasets. We use three public datasets to evaluate the pro-
posed model. QM9 dataset [Ruddigkeit et al., 2012, Ra-
makrishnan et al., 2014] is a collection of optimal structures
of 130,000 molecules with up to 9 atoms of {C, H, O, N,
F}, selected from GDB-17 [Ruddigkeit et al., 2012]. This
dataset contains only the stable structure of molecules. We
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use 80% for training, 5% for validation, and 15% for test-
ing. OC20 dataset [Chanussot et al., 2021] contains stable
structures and relaxation trajectories for systems of 15K
bulk catalysts and 82 adsorbates. We evaluate our model
on the relaxed energy prediction with a given initial struc-
ture (IS2RE). To evaluate performance on non-equilibrium
molecular conformations and reactions, we use Transition1x
dataset [Schreiner et al., 2022], which contains reaction
paths from 10k organic reactions, with 10M molecular con-
formations.

Baselines. We compare our model to several state-of-the-
art energy prediction models: SchNet [Schütt et al., 2018],
DimeNet [Gasteiger et al., 2020], TorchMDNet(ET) [Thölke
and Fabritiis, 2022], ForceNet [Hu et al., 2021], and MXM-
Net [Zhang et al., 2020b].

Evaluation Metric. We report the mean average error
(MAE) between the ground truth and predicted energy
(MAEE, in meV/mol) and force (MAEF, in eV/Å), follow-
ing existing studies.

More implementation details are provided in Appendix A.

4.2 COMPARISON WITH BASELINES

In this line of research, the MAE in energy estimation has
been most widely used. A primary application for calcu-
lating molecular energy is to search for a stable structure
and to perform molecular dynamics (MD) simulations of
structural changes over temperature and time. All of these
works are the foundation for the design and discovery of
new materials [Friederich et al., 2021, Louie et al., 2021].

At a glance to the MAEE column on QM9 dataset in Tab. 1,
we observe that our proposed model estimates the molecule
energy comparably with baselines, slightly lagging behind
the current state-of-the-art. An underlying assumption for re-
lying on the energy estimation accuracy to evaluate molecule
representation learning is that the model would need to un-
derstand the actual molecular structure in order to precisely
estimate its energy. We raise a question about this assump-
tion: Although energy estimation and structure understand-
ing are positively correlated, the model might overfit to en-
ergy estimation if we solely rely on this, optimizing beyond
the physical rules permit. This is because, with data-driven
approaches, the model is not fully informed with physi-
cal constraints and just optimizes over the objective from
limited amount of data.

For this reason, we additionally check the MAE in force
prediction. Ideally, the net force should be 0 for a molecule
in a stable state. If a model has learned the correct molecular
structure, the estimated net force should be close to 0 as
well. The MAEF columns of Tab. 1 report the force estima-
tion accuracy of each model by differentiating energy with
respect to the position. On QM9, our full model precisely

estimates zero net force (MAEF ≈ 0), indicating that our
Lforce introduced in Sec. 3.6 plays its expected role and the
learned force condition generalizes well to the unseen test
set.

Interestingly, however, other baselines achieving better en-
ergy accuracy, including our model only with Lenergy, catas-
trophically fail to estimate zero net force. This contradicts to
the common assumption that precise energy estimation re-
lies on general understanding of the molecular structure and
underlying physical rules. This result indicates that overly
optimizing only on the single energy criterion leads to break
the basic constraints that the models must satisfy for a valid
structure, making the achieved energy accuracy meaningless
as well.

The rest of Tab. 1 reports performance on OC20, compar-
ing against a few baselines using scores reported in Open-
Catalyst-Project1. Our method is competent on both tasks,
outperforming all baselines. Note that the difference in
MAEF is not as dramatic as in QM9, since both energy
and force information are included in OC20 and utilized by
all models.

In conclusion, a model with the lowest energy is the optimal
model is correct only if the model is optimized under the
perfect conditions satisfying all physical restrictions. That is,
it perfectly recovers the true potential energy surface (PES),
and the energy is precisely calculated under this PES. As a
machine learning approach is not always perfectly restricted
to reflect the physical restrictions in reality, it may find a
solution outside of the valid range, representing a case that
is not possible in reality. For this reason, it is important to
measure more metrics in addition to the energy for a more
reliable learning and model selection.

4.3 QUALITATIVE ANALYSIS WITH STRUCTURE
OPTIMIZATION

In order to see if the models actually capture the optimal
structure of molecules, we design an additional structure
optimization experiment. Starting from the stable structures
in the dataset, we slightly perturb each atom’s position from
its original optimum and optimize the structure again, ex-
pecting it to converge back to the original optimum. Upon
convergence, we measure the average Euclidean distance
∆P of each atom’s distortion from its optimal position in
the ground truth.

The ∆P columns of Tab. 1 compare the performance of
each model on this experiment. Our physics-driven model
attains a higher level of accuracy when compared to other
models, thus demonstrating its proficiency in learning the
potential energy surface of the target molecule. Moreover,
it is capable of reproducing a stable structure rather than
over-optimizing solely on energy estimation.

1
https://github.com/Open-Catalyst-Project
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Dataset (Task) QM9 OC20 (IS2RE)
Model MAEE(↓) MAEF (↓) ∆P (↓) MAEE(↓) ∆P (↓)

SchNet [Schütt et al., 2018] 14.00 2.64 0.47 1.059 0.60
CGCNN [Xie and Grossman, 2018] – – – 0.988 0.58
MXMNet [Zhang et al., 2020b] 5.90 1.83 1.57 – –
DimeNet [Gasteiger et al., 2020] 8.02 1.79 0.58 1.012 0.55
ForceNet [Hu et al., 2021] 18.62 0.41 0.21 – –
TorchMDNet (ET) [Thölke and Fabritiis, 2022] 6.15 1.15 0.32 – –

Ours (Lenergy only) 8.35 1.28 1.23 – –

Ours (full model) 15.16±0.539 0.0057±0.001 0.0251±0.01 0.887±0.024 0.10±0.01

p-value – 0 3.2× 10−7 2.6× 10−4 7.0× 10−8

Table 1: Comparison with baseline models for energy and force accuracy (in MAE) and average distortion ∆P after structure
optimization experiment. We report MAEE in meV/mol, MAEF in eV/Å, and ∆P in Å. All results are averaged over 5 trials
with different random seeds, and p-values are compared with the second-best method.
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Figure 2: (a) Structural optimization results. The left-most column is the initial stable structure in QM9, followed by recovery
results by competing models sequentially. For more structural optimization results, see Appendix Fig. I. (b-c) Distribution of
energy difference (∆Eg) and structural change (∆P ) before and after structural optimization, in log scale.

Fig. 2(a) shows optimized structures by baseline models and
ours. The left-most column displays the initial stable struc-
tures, which the baselines fail to maintain. For instance, in
the case of CH4 (top row), the Hydrogen atoms surrounding
the Carbon atom should be arranged symmetrically, but the
optimized structures by the baselines lack symmetry. In con-
trast, our model successfully recovers the optimal structure
even in complex scenarios.

Fig. 2(b-c) shows the average difference in energy distribu-
tion ∆Eg and distance deviation ∆P before and after reop-
timization, calculated over 256 molecules (comprising 128
smallest and 128 randomly sampled larger molecules) from
QM9. Our model achieves a center value of ∆Eg that is two
orders of magnitude smaller than other potentials, indicating
its superior ability to recover the optimal structure. Also, in

Fig. 2(c), the distance deviation ∆P is mostly less than 0.1
Å, and our model’s ∆P values are at least 10 times smaller
than other models. Despite being a challenging task even
for molecular dynamics, our model’s excellent performance
on this stable structure-only dataset like QM9 signifies its
capability of capturing fundamental physical principles such
as distance symmetry from limited information. Additional
examples are presented in Appendix C.

4.4 MOLECULAR ASSEMBLY AND CHEMICAL
REACTION PATHWAY PREDICTION

We employ our approach for a couple of additional tasks,
including the assessment of potential stability in non-
equilibrium structures; namely, the molecular assembly and

2439



(a) step = 0 step = 100 step = 200 step = 500 GT

step = 100 step = 200 step = 500 step = 100 step = 200 step = 500

(b)

(c) (d)

Figure 3: Molecule assembly results on (a) GDB-35 and (b)
GDB-87. The original stable structure (GT) is recovered at
500 steps, connecting the broken bond. (c-d) Failure results
by our model trained without bound conditions.
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Figure 4: Examples of energy prediction following the re-
action pathways on Transition1x. The three structures in
each panel correspond to the representative structures along
each reaction coordinate: the reactant, transition state, and
product structure, respectively. For more reaction barrier
results, see Appendix Fig. II.

the chemical reaction pathway prediction. For molecular
assembly, the energy profile continuously decreases from
the initial structure to the optimal one, whereas chemical
reactions require overcoming an activation barrier.

Molecular Assembly. The molecule assembly task presents
an additional challenge beyond the structure optimization
presented in Sec.4.3, where the objective is to recover the
stable structure from an (almost) optimal structure. This
task involves breaking one or more bonds in the molecule
by moving functional groups far away, and recovering the
original stable structure from this completely broken one. To
accomplish this, we randomly select one or two functional
groups in a molecule and disconnect the bonds between
them by translating each towards different directions, with a
displacement of 0.7 Å. We begin with the distorted structure
and optimize it using the energy profile of our model to
determine if it can regain the original stable structure. Since

the training dataset does not contain non-equilibrium infor-
mation, it is challenging for the model to accurately discover
the energy values along the pathway in which molecules are
combined.

As shown in Fig. 3, only our method succeeds in recovering
the original structure, while others show catastrophic failure.
We experiment with our model without the bound conditions
on the same task. Fig. 3(c-d) illustrates that our model also
fails in this case. This highlights the importance of the bound
conditions to learn a physically reasonable potential, even
with a limited dataset consisting only of optimal structures.

Chemical Reaction Pathway Energy Prediction. Lastly,
we conduct an even more complex task of predicting en-
ergies across the complete chemical reaction pathway, en-
compassing the structures of reactants, transition states, and
products. To accomplish this task, we adopt a transfer learn-
ing approach, by initializing the weights from a pre-trained
model on QM9 and subsequently fine-tuning on Transi-
tion1x. This is because the two datasets provide different an-
gles of information. QM9 contains 13× types of molecules
than Transition1x, so the model is pretrained on QM9 to
learn general molecular structures at an equilibrium state.
The model is then fine-tuned to learn the transition dynamics
on Trainsition1x, covering fewer types of molecules than
QM9.

Fig. 4 shows a few examples of energy profiles, following
the reaction pathway on the validation set of Transition1x.
Our model accurately predicts not just the energy of the
most stable structure (product) but also that of reactant and
transition state structures. A slightly higher error in energy
estimation is observed near the transition state, but it is not
significant enough to alter the activation barrier height that
defines the chemical reaction rates. From this result, we
conclude that our approach is effective to create a more
general potential energy surface from limited information.

4.5 SELF-SUPERVISED LEARNING WITH MAM

Fig. 5 illustrates the effect of self-supervised learning with
MAM, depending on the position of atoms. For example,
Fig. 5 (a) shows the example of CH4, where we perform
MAM inference to figure out an appropriate atom type
through the vertical direction. Fig. 5 (b) shows the inferred
atom type at each position, from atomic number 1 to 14. The
atoms that the QM9 covers, H, C, N, O, and F, are marked
in the figure.

Fig. 5 (b) shows that around ±2 Å from the center, the Car-
bon is strongly favored. On the other hand, Fluorine (F),
which is not completely chemically favored, MAM shows a
very low affinity. The Nitrogen and Carbon of C4NH5 also
show a similar trend as shown in Fig. 5 (c-e). In Fig. 5 (e),
Carbon is favored by MAM as expected, and interestingly,
Nitrogen is also weakly favored, unlike CH4. Presumably,
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Figure 5: Visualization of MAM. (a), (c) The masked atom is moved along the pink arrow (z-axis), and (b), (d-e) illustrate
the likelihood score along corresponding positions.

No. Base [CLS] LJP Mask Force Bound MAEE ↓ MAEF ↓ ∆P ↓

1 X 11.83 0.77 1.76
2 X X 9.03 0.90 1.11

3 X X X X 9.70 1.91 0.814
4 X X X X 10.18 0.016 0.141
5 X X X X 16.34 0.007 0.038

6 X X X X X 20.67 0.004 0.022
7 X X X X X 17.50 0.005 0.027
8 X X X X X 17.34 0.013 0.044
9 X X X X X 9.65 0.015 0.083
10 X X X X X X 15.16 0.005 0.025

Table 2: Ablation study results, adding or subtracting compo-
nents in the loss function. Red figures indicate unacceptably
inferior results (MAEF,∆P � 0.1).

it is due to the shape of the C4NH5 molecule. Note that the
amplitude of the atom recommendation through MAM is
maximized at the most stable energy position. This reveals
that the model self-learns the relationship between surround-
ing atoms from energy and the positions through MAM. In
molecule generation tasks, MAM would be more efficient
than randomly connecting atoms and repeating structural
optimization iteratively.

4.6 ABLATION STUDY

We conduct an ablation study to see which component con-
tributes to improve which metric. We start from a ‘Base’
model, which indicates our Transformer model described in
Sec. 3.3 without using any physics-empowered components.
Tab. 2 compares multiple configurations of our model using
a subset of components. Comparing #1 and #2, the [CLS]
token turns out to be effective, reducing the energy error.
The rest compares by adding each component separately
starting from our base + LJP equation model (#3–5) and by
eliminating each component from the full model (#6–10).
We observe the following:

• Mask plays its role in improving the energy estimation.
Comparing #7 and #10, having Mask helps the model to
improve MAEE without affecting MAEF or ∆P . Solely
with Mask (#3), it achieves a nice MAEE, but its struc-

ture is suboptimal implied by inferior MAEF and ∆P .

• Bound condition is the most important component for
understanding the overall structure. Without it (#9), ∆P
gets significantly worse than the full model (#10), while
MAEE gets (probably illegally) better by focusing more
on the energy like baseline models. With Bound only
(#5), it achieves reasonable MAEF and ∆P , which is
not possible only with Mask (#3) or Force (#4).

• Force affects all metrics slightly at the same time. With-
out Force (#8), all metrics get slightly worse compared
to the full model (#10). With the Force only (#4), how-
ever, the ∆P is suboptimal. We conclude that the Bound
condition is also needed to get an acceptable ∆P .

Appendix B presents an additional ablation study on model
size and MAM masking ratio.

5 CONCLUSION

In this study, we present a molecular representation learning
approach that harnesses physics-driven parameter estima-
tion from classical energy equations and self-supervised
learning via masked atomic modeling. This method ad-
dresses the challenges posed by data scarcity and facilitates
extrapolation predictions beyond the training distribution.

Furthermore, we introduce a set of innovative evaluation
schemes to assess the model’s ability to generalize the struc-
ture of molecular potential energy surfaces beyond stable-
state energies in the training set. Specifically, we evaluate
the molecular structure optimization, molecular assembly,
and chemical reaction pathway prediction capabilities of
the model. Our extensive experiments on multiple bench-
mark datasets demonstrate that this multifaceted evaluation
approach is advantageous, in addition to the widely-used
evaluation scheme that relies on energy or force estimation
accuracy in stable states, to ensure the reliability of the
learned potential energy surface.

To conclude, we take a step towards physically reliable
molecular representation learning under limited data avail-
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ability. Maximally utilizing information in both model de-
sign and training would shed light on future research.
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A IMPLEMENTATION DETAILS

We try L ∈ {4, 6, 8} to stack Molecule Attention Blocks
after the embedding layer. We set the embedding size d =
256, which is same as (number of heads)× nb. Here, nb is
the same as the dimension of the query, key, and value in the
attention block. For activation, we use LeakyRELU [Nair
and Hinton, 2010, Sun et al., 2015] function after fmol and
ELU [Clevert et al., 2016] after fbond. To enforce the positive
base and exponents in the parameterized LJP and to avoid
numerical errors, we add 1 + ε to β3, β4, where ε is set
to be 10−3. We set the cutoff threshold τ = 5Å, and the
number of RBFs nb = 16. We use a single linear layer
for fatom and fbond, while a two-layer MLP for the MAM
task. Specifically, the MLP outputs the estimated likelihood
score for 64 atoms for each masked input token. For the
overall objective function, we choose weights as λforce =
0.3, λmask = 0.7, and λbound = 1. The βzi,k and µzi,k are
initialized to (2n−1

b (1− exp(−τ))−2 and uniformly within
[0, 1], respectively.

For training, we use a learning rate of 5× 10−4 with Adam
optimizer [Kingma and Ba, 2015]. We warm-up for 10
epochs, linearly increasing the learning rate, and we de-
cay the learning rate with the ratio of 0.6 and patience of
24. The minimum learning rate is set to 10−7. We train the
model for up to 900 epochs.

For transfer learning experiment on Transition1x, we pre-
train a model with L = 6 on QM9 dataset. The cutoff
thereshold is set to τ = 7.5Å, while other hyperparameters
are set the same as the above.

B ADDITIONAL ABLATION STUDY

We conduct an additional ablation study with varied number
of layers. Tab. I shows that the A-mask we introduce in
Fig. 1 indeed helps in most cases. Also, we observe that
using more MABs up to 8 tends to improve the overall

*Corresponding authors

Layers 4 (Base) 6 (Large) 8 (Huge)

Method MAEE MAEF MAEE MAEF MAEE MAEF

Base 11.86 0.91 11.83 0.77 11.33 0.72
+ [CLS] 11.70 0.78 9.03 0.90 9.70 0.78
+ A-mask 9.89 0.98 9.55 1.33 9.33 0.88
+ MAM 10.77 1.43 9.38 1.27 8.35 1.28

Table I: Ablation study on SSL methods with different num-
ber of layers

performance.

We also search the mask ratio of our MAM task in Tab. II.
We observe that using a mask ratio of 0.3 is clearly bet-
ter than others in terms of both energy prediction and a
reasonable PES.

Masking ratio MAEE MAEF ∆P

0.1 16.18 0.0056 0.028
0.15 15.82 0.0060 0.028
0.2 16.77 0.0057 0.029
0.3 15.16 0.0050 0.025
0.5 17.73 0.0066 0.032

Table II: Ablation study on masking ratio

C ADDITIONAL EXAMPLES

Reaction barrier estimation. We evaluate the entire Tran-
sition1x reaction barrier estimation task by calculating and
comparing the reaction barrier task with the ground truth
across 225 reaction paths. Our method shows reasonable
results on 212 of them, with a mean absolute error (MAE)
less than 0.2 eV on average. These results are presented in
Fig. II.

Structure optimization. We report additional structural op-
timization results of random molecules in the QM9 dataset
in Fig. III. We observe that our model and TorchMDNet (ET)
mostly preserve the optimal structure, while other baselines
significantly destroy structures. In addition, we present re-
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Figure I: Additional structural optimization results by dif-
ferent MAM making ratios.

Figure II: Estimated reaction barrier along the reaction path-
ways of Trainsition1x dataset. The ground truth barriers are
on the x-axis, and those estimated by our model are on the
y-axis, in eV scale.

laxation results from 102 molecules in Fig. IV–XII. We
list results from other baselines and the GT structure(Ref.).
Blanks are failed results.
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Figure III: Additional structural optimization results by ours and baselines.



Figure IV: Additional structural optimization results (1/9)



Figure V: Additional structural optimization results (2/9)



Figure VI: Additional structural optimization results (3/9)



Figure VII: Additional structural optimization results (4/9)



Figure VIII: Additional structural optimization results (5/9)



Figure IX: Additional structural optimization results (6/9)



Figure X: Additional structural optimization results (7/9)



Figure XI: Additional structural optimization results (8/9)



Figure XII: Additional structural optimization results (9/9)
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