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ABSTRACT
This is an exploratory study that discovers the current image
quantization (vector quantization) do not satisfy translation
equivariance in the quantized space due to aliasing. Instead of
focusing on anti-aliasing, we propose a simple yet effective
way to achieve translation-equivariant image quantization by
enforcing orthogonality among the codebook embeddings. To
explore the advantages of translation-equivariant image quan-
tization, we conduct three proof-of-concept experiments with
a carefully controlled dataset: (1) text-to-image generation,
where the quantized image indices are the target to predict, (2)
image-to-text generation, where the quantized image indices
are given as a condition, (3) using a smaller training set to
analyze sample efficiency. From the strictly controlled exper-
iments, we empirically verify that the translation-equivariant
image quantizer improves not only sample efficiency but also
the accuracy over VQGAN up to +11.9% in text-to-image
generation and +3.9% in image-to-text generation.

Index Terms— Vector Quantization, Translation Equiv-
ariance, Aliasing, Text-Image Generation, Sample Efficiency

1. INTRODUCTION

Vector quantization [1] has gained popularity in multimodal
learning problems such as text-to-image generation. In par-
ticular, several works [2, 3, 4] demonstrated impressive text-
conditioned image generation, only using image quantization
and Transformer [5]. Methods that utilize vector quantization
in image downstream tasks usually take a two-stage approach:
first learning to quantize images, then solving a downstream
task with the quantized representation. In the first step, an im-
age quantizer (e.g., VQVAE [1] or VQGAN [6]) encodes an
image as a sequence of codebook indices using codebook em-
beddings (Stage 1). Then, the resulting indices are given as in-
put to downstream image modeling tasks (Stage 2). By mod-
eling images in this fashion, the input indices of the down-
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Fig. 1: (a) Image quantization before translation of the top-left
5; (b) Broken translation equivariance in the quantized space
after the translation of 5; (c) Perfect translation equivariance
in the quantized space with our orthogonal codebook embed-
dings. z1, z2 are the corresponding features in terms of shifted
location. By enforcing orthogonality in the quantized space as
in (c), a slight deviation due to aliasing can be ignored, and
the same codebook index (e.g. 2) is given to z1, z2.

stream task can be treated in the same manner as token in-
dices in text. This discretization of images allows us to model
a relatively shorter sequence of image representations, and to
even jointly handle textual information more naturally.

Although the idea of representing an image with quan-
tized indices has been appreciated, the representations learned
by existing methods turn out to be far from ideal yet. Specifi-
cally, we focus on translation equivariance, a property for an
image quantizer to represent semantically same objects with
the same indices regardless of its location within the image. A
toy example in Figure 1 (b) indicates, however, that the state-
of-the-art image quantization method, VQGAN [6], breaks
this property even for the most trivial setting (locating the ex-
actly same image patch at the pixel level).

Referring to the literature, the cause of the broken transla-
tion equivariance is due to aliasing, caused by downsampling
operations (e.g., strided convolution, maxpooling) [7, 8]. In
other words, the following can hold:

z2 = z1 + ϵ, (1)

where ϵ is a noise caused by aliasing, and z1 and z2 are the



corresponding features in terms of the shifted location (Fig-
ure 1). In an effort to reduce ϵ, one of the anti-aliasing meth-
ods in both signal processing and CNNs is to apply a low-pass
filter during downsampling [9, 10, 8, 11]. In deep neural net-
works, it is challenging to enforce ϵ to be completely zero in
the feature map space, as complete anti-aliasing still requires
careful manipulation of filters. However, when it comes to im-
age quantization, where images are represented as codebook
indices, ϵ no longer needs to be zero as long as the features are
mapped to the same codebook index. This implies that trans-
lation equivariance in the ‘quantized space’ can be achieved
by a different approach than enforcing translation equivari-
ance in the ‘feature map space.’

In this paper, we propose a simple yet effective way to
achieve translation-equivariant image quantization by enforc-
ing orthogonality among the codebook embeddings. Then,
with carefully controlled datasets, we study how it affects
the downstream image modeling tasks. For the Stage 2, we
use the following three settings: (1) text-to-image generation,
where the quantized image indices are the target to predict, (2)
image-to-text generation, where the quantized image indices
are given as a condition, (3) using a smaller training set to
analyze sample efficiency. We report advantages and limita-
tions of translation-equivariant image quantization in all three
settings from thorough analysis of the experimental results.

Our contributions include: (1) To the best of our knowl-
edge, this is the first work to explore the problem of transla-
tion equivariance in the quantized image space; (2) Instead
of focusing on anti-aliasing, we take a direct approach to
achieve translation equivariance in the quantized space by
regularizing orthogonality in the codebook embedding vec-
tors; and (3) We show that a translation-equivariant image
quantizer improves not only sample efficiency but also the
accuracy of text-to-image and image-to-text generation on
text-augmented MNIST [12] by up to +11.9% and +3.9%, re-
spectively. We discuss insights discovered from our analysis
on the behavior of the quantized representations.

2. RELATED WORK

2.1. Image Quantization

Image quantization or vector quantization of images is an ef-
ficient encoding method that represents images in the discrete
latent space via an encoder and decoder. Oord et al. [1] first
applied this idea to the generative tasks, which can fully lever-
age the power of both encoder and decoder. In this manner,
downstream models (generators) only need to handle a much
shorter sequence of image tokens, compared to handling each
pixel. Thanks to the other advantage of jointly handling im-
age and text tokens more naturally, this idea quickly spread
to multimodal tasks such as text-to-image generation. For ex-
ample, DALL-E [2] and CogView [3] receive both the text
and image tokens as a single stream, similar to GPT [13], and
calculate self-attention. Parti [4] adopts an encoder-decoder

Transformer [5] structure, where the encoder takes text tokens
as inputs and the decoder autoregressively predicts discrete
image tokens. These models demonstrated the effectiveness
of the quantization in the text-image multimodal problem.

Esser et al. [6] proposed VQGAN, an effective extension
of VQVAE [1] by introducing an adversarial loss and percep-
tual loss. The addition of two objectives provides image rep-
resentations that result in a sharper and detailed reconstruc-
tion of images. More recently, Yu et al. [14] further boosted
the efficiency and reconstruction quality of image quantizers,
replacing CNNs with the ViT architecture [15]. Since Con-
volutional Neural Network (CNN) is one of the most widely
used and well-established networks, we utilize a CNN-based
quantizer, VQGAN, as our base image quantizer in this work.

2.2. Translation Invariance and Equivariance
Translation invariance requires the output unchanged by the
shifts in the input, while translation equivariance is a mapping
which, when the input is shifted, leads to a shifted output. In
other words, translation invariance is about the final repre-
sentation after Global Average Pooling (GAP) in CNNs, and
translation equivariance is about the feature map before GAP.
A fundamental approach to handle translation invariance and
equivariance is anti-aliasing. Simoncelli et al. [7] first formal-
ized ‘shiftability’ and related it to aliasing. Since then, careful
calibration of sampling rate according to the Nyquist sam-
pling theorem [16] or applying a low-pass filter has been a
natural choice to avoid aliasing in downsampling.

It is only recently that deep learning has started to explore
translation invariance and equivariance [17, 8, 18, 19]. Zhang
[8] applied a low pass filter between a stride-one operator and
naive subsampling to improve translation equivariance in the
latent feature map space, but Azulay and Weiss [17] pointed
out that nonlinearity such as ReLU still hinders anti-aliasing
even with low-pass filtering. Karras et al. [11] proposed an
ideal sampling method and nonlinearity to avoid aliasing in
the image generation task. In a similar motivation to theirs,
we investigate translation equivariance in the generation task
but pay special attention to the vector-quantized space and
multimodal learning problem.

3. METHOD

3.1. Translation Equivariance in Quantized Space

Let x ∈ RH×W×3 be an image of size H × W with RGB
channels. A CNN F takes x as input, and produces a feature
map F(x) ∈ RH′×W ′×C′

. Let Q be a quantization operation,
and Q(F(x)) = Fq(x) ∈ RH′×W ′×C′

be the quantized fea-
ture map. F is called translation equivariant in the quantized
space if

Fq(T1(x)) = T2(Fq(x)) (2)

where T1 is a translation operation in the image space and
T2 is the translation operation in the quantized space corre-



sponding to T1. In other words, it is enough for the transla-
tion equivariance in the quantized space to have the T2 rela-
tionship between the quantized code indices of F(T1(x)) and
F(x), even if F(T1(x)) ̸= T2(F(x)). Note that we can safely
focus only on the relationship between the code indices, be-
cause the decoder-only Transformer [5] in the following stage
takes the input image in the form of code indices, not image
feature maps or codebook embedding vectors.

3.2. Image Quantizer (TE-VQGAN)

VQGAN [6] consists of a CNN-based encoder F , a CNN-
based decoder G, and codebook embeddings e ∈ RC′×K ,
where K is the codebook size and C ′ is the number of feature
channels. F gets an image x ∈ RH×W×3 and produces a
feature map F(x) ∈ RH′×W ′×C′

. Let a fiber of the feature
map whose spatial coordinate is (h′, w′) be F(x)(h′,w′) ∈
RC′

, where (h′, w′) ∈ [1, H ′] × [1,W ′] and h′, w′ ∈ Z.
F(x)(h′,w′) is assigned to the closest embedding vector
ek ∈ RC′

based on L2 distance:

Fq(x)(h′,w′) = ek, k = argmin
j

∥∥F(x)(h′,w′) − ej
∥∥2
2
. (3)

The decoder G gets Fq(x) and produces the reconstructed
image, x̂ = G(Fq(x)) ∈ RH×W×3. F ,G, and e are jointly
trained by minimizing ∥x− x̂∥2.

As mentioned in Section 1, if we interpret alias as a noise
due to downsampling, the following relationship may hold:

F(T1(x))(h′,w′) = T2(F(x))(h′,w′) + ϵ. (4)

Here, it is a non-trivial task to make ϵ zero. However, as men-
tioned in Section 3.1, as long as we are only interested in the
image code indices, we can focus only on assigning the same
code ek to both F(T1(x))(h′,w′) and T2(F(x))(h′,w′) rather
than trying to actually make ϵ = 0. Surprisingly, this can be
achieved by simply enforcing the orthogonal structure in the
quantized space; that is, by regularizing the embedding vec-
tors ek to be orthogonal to each other. The intuition behind
this is well illustrated in Figure 1. In the unregularized quan-
tized space, feature maps z1 and z2 that slightly differ due to
alias are mapped to respective embedding vectors e2 and e8,
respectively. In the orthogonal quantized space, however, ev-
ery embedding vector is orthogonal to one another, and it is
easier to ignore small noise due to alias when z1 and z2 are
mapped to the same embedding vector e2.

We add the following regularization term to the loss func-
tion of VQGAN to enforce orthogonality among the code-
book embeddings:

LREG(e) = λ
1

K2

∥∥ℓ2(e)⊤ℓ2(e)− IK
∥∥2
F

(5)

where IK ∈ RK×K and ℓ2(e) ∈ RC′×K denotes the iden-
tity matrix and an L2-normalized code embedding along the
first dimension, respectively, and ∥ · ∥F denotes the Frobenius
norm. We set λ to 10 in all experiments provided in Section 4.
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(b) Constraints on the dataset.

Fig. 2: Dataset examples and constraints.

4. EXPERIMENTS

Data Construction. To carefully explore the advantages
of the translation-equivariant image quantizer, we created
MNIST-based image-caption pairs, as shown in Figure 2a.
First, we sample one to four digits from the original dataset,
and randomly place them in four quadrants of the 64 × 64
space. Note that the original samples have the 28 × 28 res-
olution, so we pad every sample with 2 pixels. Then, we
created image captions with syntactic variations. To perform
zero-shot-like generation, we applied different constraints
between the train and test set, as shown in Figure 2b. For
example, white 0 on the upper left does not exist in the train
set, while all 0’s in the test set are white and placed in upper
left. In total, we generated 300K samples for train, 3,000 for
validation, and 3,000 for test set.
Experiment Setting. Since aliasing occurs during downsam-
pling, we train image quantizers with four different downsam-
pling methods as baselines, including with Blurpool [8], as
blurring before subsampling might be sufficient to anti-alias:
StridedConv (SC), ConvBlurpool (CB), MaxPool
(MP), and MaxBlurpool (MB). Then in Stage 2, similar to
DALL-E, The decoder-only Transformer is trained by next-
token prediction changing the quantizers pretrained in Stage
1. We measure the performance of a generator when TE-
VQGAN (Ours) is used and vanilla VQGANs with various
downsampling methods are used. Experiments in Section 4
were conducted three times with random initialization.

4.1. Text-to-Image Generation

We measure the digit accuracy when the generated im-
age has one (Quad1), two (Quad2), three (Quad3), and
four digits (Quad4). Each case has approximately 600 im-
ages. As an example, in Quad2, given a text ‘the lower
right is blue nine, and the white two is
on the upper left.’, a rule-based caption parser will
convert the text into {(LR, B, 9), (UL, W, 2)}.
With the parsed output, we crop the corresponding loca-
tions, lower right and upper left, from the generated image.
Then, we measure the accuracy of digits on these two cropped



Table 1: Semantic accuracy of text-to-image and image-to-text generation.

Text-to-Image Image-to-Text

Model Quad1 Quad2 Quad3 Quad4 Quad1 Quad2 Quad3 Quad4
MB 0.724 (0.033) 0.697 (0.066) 0.635 (0.067) 0.620 (0.077) 0.587 (0.032) 0.507 (0.021) 0.433 (0.013) 0.378 (0.020)
MP 0.713 (0.007) 0.703 (0.015) 0.669 (0.017) 0.656 (0.028) 0.561 (0.042) 0.500 (0.038) 0.412 (0.034) 0.360 (0.039)
CB 0.753 (0.037) 0.741 (0.034) 0.682 (0.043) 0.649 (0.055) 0.563 (0.041) 0.455 (0.056) 0.362 (0.046) 0.309 (0.043)
SC 0.812 (0.032) 0.806 (0.030) 0.790 (0.038) 0.761 (0.051) 0.786 (0.052) 0.692 (0.063) 0.595 (0.086) 0.542 (0.106)
Ours 0.931 (0.033) 0.913 (0.032) 0.890 (0.048) 0.868 (0.059) 0.825 (0.037) 0.713 (0.066) 0.621 (0.061) 0.554 (0.065)

images using a pretrained classifier with a accuracy of 99.5%.
We compare Ours, which uses the SC downsampling

method with the orthogonality regularization, with four base-
lines. As shown in Table 1, our method brings significant
performance improvements compared to the baselines (MB,
MP, CB, SC), clearly demonstrating the importance of trans-
lation equivariance in the quantized space.

4.2. Image-to-Text Generation

Given a 64 × 64 image, the generator synthesizes a caption
describing it. We measure its accuracy of digit identity us-
ing a simple rule-based parser. As shown in Table 1, the gap
between Ours and baselines in this task (I → T) is smaller
than that of T → I, and the actual performance of I → T is
significantly lower than that of T → I for all methods. We
conjecture that this difference comes from how texts and im-
ages are evaluated. Since an image is classified as a whole,
miss-predicting a code index or two might have little effect.
On the other hand, miss-predicting a specific text token, such
as the digit token, can have a catastrophic impact.

4.3. Sample Efficiency

Table 2: Digit accuracy of generated images in Quad1 varying
the size of the train set.

Size VQGAN TE-VQGAN (Ours)
300K 0.812 (0.032) 0.931 (0.033)
100K 0.739 (0.037) 0.919 (0.022)
Diff 0.073 0.012

We demonstrate that the translation-equivariant image quanti-
zation could improve the generator’s ability to synthesize the
shifted images, which are never shown at the training phase.
This is possible due to our model’s consistent use of code in-
dices for a given digit regardless of its position in the image.
From this result, we posit that the Stage 2 generator would
be able to learn the relationship between image and text with
an even smaller dataset. To verify this, we conduct an exper-
iment where we train two generators on a small (100K) and
a large (300K) training set. We then measure the two genera-
tors’ digit accuracy of T → I generation using the test set.

As we hypothesize, Table 2 shows that the generator with
TE-VQGAN is more robust to the reduced training set size
than the one with vanilla VQGAN. From this, we claim that
translation-equivariance could be a potential solution to the
scalability issue that modern generative models suffer from.

5. DISCUSSION

Table 3: Code usage, reconstruction loss, and perceptual loss.

Dataset Code usage Recon loss Perceptual loss

VQGAN TE-VQGAN VQGAN TE-VQGAN VQGAN TE-VQGAN
MNIST 252 14 0.0079 0.0084 0.0036 0.0048
FASHION 250 18 0.0150 0.0187 0.0108 0.0198

The first person to divide rainbow into 7 colors was Sir Isaac
Newton. It is known that up to 207 colors of rainbows can
be distinguished by human eye, but Newton expressed rain-
bows with only seven ‘essences’. Our methodology is similar
in spirit: using the orthogonality regularization, only a few
essence codes are used as described in Figure 1.

We count the number of codes that are used at least once
in Stage 1. Surprisingly, TE-VQGAN uses only 14 and 18
codes to represent colored digits and colored fashion items1,
as seen in Table 3. In other words, the 14 and 18 ‘essence’
codes are sufficient to represent each dataset.

One possible limitation of using fewer essence codes is
sacrifice in image fidelity. Drawing a rainbow with only 7 col-
ors will certainly miss its finer hue. Table 3 shows the recon-
struction loss ∥x− x̂∥1 and the perceptual loss [21] between
x and x̂. This empirically confirms that, even though orthog-
onal regularization miss some visual information, its impact
is marginal. Since our ultimate aim lies in multimodal gen-
eration rather than reconstructing images, the ability to un-
derstand the semantics of the given condition is more impor-
tant than reconstructing every bit of fine details. Therefore,
considering the result from Section 4, we can conclude that
despite some minor drawbacks, we can achieve the more de-
sirable goal of multimodal generation.

6. CONCLUSION

This work is a exploratory study that first explore translation
equivariance in the image quantized space and propose a sim-
ple yet effective way to achieve it. Our proof-of-concept ex-
periments demonstrate that our method improves image-text
multimodal generation performance and sample efficiency.
Future research directions may include experimentation with
real world datasets and diverse set of downstream tasks.

1We additionally conducted this experiment using Fashion-MNIST [20].
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