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Abstract

Video summarization is a task of shortening a video by
choosing a subset of frames while preserving its essential
moments. Despite the innate subjectivity of the task, previ-
ous works have deterministically regressed to an averaged
frame score over multiple raters, ignoring the inherent sub-
jectivity of what constitutes a “good” summary. We propose
a novel problem formulation by framing video summariza-
tion as a conditional generation task, allowing a model to
learn the distribution of good summaries and to generate
multiple plausible summaries that better reflect varying hu-
man perspectives. Adopting diffusion models for the first
time in video summarization, our proposed method, Sum-
mDiff, dynamically adapts to visual contexts and gener-
ates multiple candidate summaries conditioned on the input
video. Extensive experiments demonstrate that SummDiff
not only achieves the state-of-the-art performance on var-
ious benchmarks but also produces summaries that closely
align with individual annotator preferences. Moreover, we
provide a deeper insight with novel metrics from an analysis
of the knapsack, which is an important last step of generat-
ing summaries but has been overlooked in evaluation.

1. Introduction

Recently, short-form videos draw significant attention on
video sharing platforms, with a trend that consumers in-
creasingly prefer to quickly grasp the content. They of-
ten compressively convey contents that are originally in a
longer form, summarizing the core contents into a shorter
one; e.g., sport games highlights or movie summarization.
This task of selecting core parts of a long video to construct
a shorter one is called video summarization. This task is in-
herently subjective, since there can be multiple criteria for
a ‘good summary’; e.g., comprehensively covering the en-
tire storyline or subjectively selecting impressive parts of
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the video (highlight detection). Due to this inherent sub-
jectivity, most video summarization or highlight detection
datasets [20, 71] offer annotations by multiple raters to re-
flect various perspectives.

Since each annotator may have different opinion on the
importance of a frame, most existing methods [3, 17, 22,
34, 67, 82] take the frame-level importance scores aver-
aged across multiple annotators as their target label, and
are trained to predict them. This frame-level score aggre-
gation looks reasonable in some sense, but in fact it loses
the various perspectives to summarize each video. For in-
stance, suppose half of the annotators select clips from the
first quarter of the video while the other half select clips
from the last quarter. If one simply averages their frame
scores, both the first and last quarters end up with simi-
lar importance, obscuring the two distinct valid summaries.
That is, this simple regression to the averaged frame-level
importance scores fail to preserve multiple viewpoints to
summarize the video.

In order to preserve and reflect various views to summa-
rize a video, we pose a distribution of its good summaries
and let the model to learn it, instead of giving an already-
aggregated single ground truth importance score. Then,
the video summarization task can be seen from a gener-
ative perspective; i.e., a process of learning and inferring
the distribution of good summaries conditioned on the in-
put video. Specifically, the model is now in charge of esti-
mating the distribution of plausible summaries for the given
video. Once trained, it allows us to sample multiple sum-
maries from the estimated conditional data manifold. To
the best of our knowledge, this generative approach to the
video summarization has not been extensively studied, ex-
cept for a few works [2, 50] that applied adversarial losses
to construct a summary that looks like the original video.

Formulating the video summarization problem as a con-
ditional generation task, we propose to adopt the generative
diffusion [25, 72] mechanism, which has been successfully
applied to various conditional generation tasks [24, 54, 61].
Specifically, conditioned on the input video, our proposed
SummDiff model learns to denoise a random importance
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Figure 1. Overview of SummDiff. Given an input video, SummDiff generates impor-
tance scores conditioned on video frames. T denotes the number of DDIM steps.
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Figure 2. Video Importance Score De-
noiser. We use AdaLN layer to inject time
and positional conditions, following [58].

score vector over the given video into an importance score
vector sampled from the distribution that corresponds to a
good summary of the video. In contrast to the previous de-
terministic methods, our approach allows to sample mul-
tiple plausible summaries for a given video starting from
a different random noise, better aligned with the subjective
nature of summarization where we usually have various true
labels reflecting multiple views.

Extensive experiments demonstrate that our model out-
performs existing baselines across multiple datasets. Also,
we revisit the knapsack, a relatively unexplored step in the
summarization evaluation in spite of its nontrivial impact
on the performance, and propose additional novel metrics
based on this analysis to provide deeper insights.

Our contributions can be summarized as follows:
• We propose a novel generative viewpoint of video sum-

marization, better suited for the subjective nature of the
task, allowing multiple plausible summaries for a video.

• We innovatively apply diffusion to the video summa-
rization for the first time, integrating learning the dis-
tribution of good summaries into the model.

• We analyze the knapsack optimization process and pro-
pose additional metrics to quantify the optimality of the
predicted importance scores.

2. Problem Formulation
Given a video of N frames, the objective of video summa-
rization is to identify and select S < N frames that ef-
fectively encapsulate the essence of the video content. Let
X ≡ {Xi ∈ RH×W×3 : i = 0, ..., N − 1} ∈ RN×H×W×3

be a video, where H,W denote the size of the frames.
A video summary, y ≡ {yi ∈ {0, 1} : i = 0, ..., N −

1,
∑

i yi ≤ S} ∈ {0, 1}N , indicates inclusion (1) or exclu-
sion (0) of each frame. When a video is provided with mul-
tiple ground truth annotations, we denote each individual
score by s(r) ∈ [0, 1]N and the corresponding binary sum-
mary by y(r) ∈ {0, 1}N which is obtained following the
procedure explained in Sec. 3.3. The predicted summary is
denoted by ŷ ≡ {ŷi ∈ R : i = 0, ..., N − 1} ∈ RN .

Previous models [3, 17, 67] have approached video sum-
marization as a regression task, aiming to predict the im-
portance score s ∈ [0, 1]N for each video, often the average
of multiple importance scores, 1

|R|
∑

r∈R s(r). In contrast,
our approach allows multiple summaries for each video,
aiming to learn the distribution of its plausible summaries.
The previous scheme can be seen as a special case of ours,
where every video has a single golden way of summariza-
tion, pointed at s with zero variance. Under our extended
setting, multiple importance scores {s(r)|r ∈ R} can be
given to the same conditioning video X, forming a proba-
bility distribution of plausible importance scores.

3. Diffusion-based Video Summarization
Posing the video summarization as a conditional generation
task, we introduce our SummDiff model, designed to adapt
the distribution of individual importance scores for a given
video by learning to denoise.

3.1. Overall Flow of the Proposed Method
Fig. 1 illustrates the overall flow of our SummDiff model.

Encoding Process. We first encode each frame Xi for i =
1, ..., N from the input video X using a pre-trained image
encoder. The extracted features are further contextualized
through self-attention [80], as seen in Fig. 1. We denote the
encoded feature for each individual frame by zi ∈ RD, and
collectively the entire feature matrix by Z ∈ RN×D.

Denoising Process. We then learn to denoise an individual
importance score vector from a random noise, conditioned
on the visual embeddings. First, the forward process adds
noise to the ground truth individual importance score s0 ≡
s(r) and sample a noised one st =

√
ᾱts0 +

√
1− ᾱtϵt,

where ϵt ∼ N (0, I), ᾱt =
∏t

τ=1(1 − βτ ), and t is the
diffusion time step. The perturbation kernel at t, defined as
q(st|st−1) = N (st;

√
1− βtst−1, βtI), where βt is defined

by the variance schedule. Since s0 is bounded within [0, 1],
it is not straightforward to add Gaussian noise directly to
it so we first transform it to its logit, u0 = log s0

1−s0
∈



RN , and perform the noising process in this logit space.
For numerical stability, we clip s0 to [ϵ, 1− ϵ], where ϵ is a
small constant.

Then, the reverse process progressively removes
noise from st to s0, formulated by pθ(st−1|st) =
N (st−1;µθ(st, t), σ

2
t I), where σ2

t is determined in relation
to βt, and the posterior mean µθ(st, t) is modeled with a
trainable neural network. In this paper, we extend this esti-
mator of posterior mean to be conditioned on a video, simi-
larly to the conditional generation on diffusion models.

Once trained, our denoiser is able to recover a plausible
importance score for a video from a random noise, which
is used to generate a summary (Sec. 3.3). Repeated genera-
tion across the noise distribution would converge to the true
distribution of plausible scores for the video.

3.2. Video Importance Score Denoiser
We formulate the key component of our method, the video
importance score denoiser in Fig. 2. Starting from a noised
logit score vector ut ∈ RN , it predicts a plausible impor-
tance score, conditioned on the given video. Denoted by
fθ(ut, t,Z), it learns to denoise the given score vector ut at
the diffusion time step t under the visual condition Z, pro-
ducing the denoised score ût−1 by one time step, where θ
is the set of its learnable parameters.
Transformer-based Diffusion. We denoise the logit-
transformed score ut given t and Z, predicting ût−1, us-
ing a transformer-based cross-attention [80]. The logit-
transformed score ut acts as the query, and the visual condi-
tion Z is used as key/value. This setup allows the model to
effectively denoise ut conditioned on the information from
the input video, ensuring consistency between the predicted
logit score ût−1 and the condition Z.

To apply dot-product cross-attention, the dimensionality
should match for queries and keys. To this end, we quan-
tize the importance scores into a predefined number (K) of
uniform segments. Specifically, we convert the noised logit
ut back to its original bounded range [0, 1] by applying sig-
moid 1/(1+ e−ut), and divide them into K equally-binned
segments. Each score range is associated with a learnable
embedding of size D (codebook in Fig. 1). Based on the
codebook C, we map the scores ut ∈ RN to their corre-
sponding quantized embedding C(ut) ∈ RN×D. Our de-
noiser fθ(C(ut), t,Z) takes this C(ut) as input, instead of
ut. See Sec. 4.5 for anaylsis on the size of codebook.
Query Formation in Cross-Attention. Following [25],
the time step t is embedded as τ ∈ RD using sinusoidal
functions and an MLP. Considering the sequential nature of
videos, we also introduce temporal positional embeddings
Φ ∈ RN×D using sinusoidal functions.

The simplest way to set the query in the cross-attention
would be to add all inputs except for the condition Z; that is,
Qt = C(ut) + τ +Φ. However, we leverage AdaLN-Zero

block [58] to integrate the time embedding τ and temporal
positional encoding Φ more effectively by separating them
from the query Qt, preventing information mixing. Hence,
the query becomes Qt = C(ut) and τ ,Φ are conditioned
via scale-shift operation. See Sec. 4.5 for ablation studies.

We conduct cross-attention with Qt as queries and visual
condtions Z ∈ RN×D as keys K and values V. We take an
MLP from the AdaLN output to regress the scale and shift
parameters, denoted by A1, B1, Γ1, A2, B2, and Γ2 ∈
RN×D. As depicted in Fig. 2, they scale and shift Qt, K,
and V. Then, they are passed through cross-attention with
skip connections and a subsequent rescaling. Formally,

Hi′ = Γ1 ⊙Hi +Hi +B1

X1 = A1 ⊙ softmax(Qi
t

′
Ki′⊤)Vi′ +Qi

t

′

X2 = Γ2 ⊙X1 +X1 +B2

Qi+1
t = A2 ⊙ MLP(X2) +X2,

where Hi(′ ) ∈ {Qi
t
(′ )
,Ki(′ ),Vi(′ )} denotes the matrices

used for attention, ⊙ is the (broadcasted) Hadamard prod-
uct, and i = 1, ..., L is the layer index.

Training. We train the denoiser fθ to estimate the true im-
portance score ŝ0 after acting upon a fully-connected layer
and a sigmoid function σ. We minimize the following loss
[12] on each annotator’s individual importance score:

L(s0, ŝ0) = ∥s0− ŝ0∥22 = ∥s0−σ(FC(fθ(C(ut), t,Z)))∥22.

The learnable embeddings in the codebook C are compos-
itely optimized, finding an effective representation for ut

during training.

Inference. Our model generates a logit-transformed impor-
tance score from a random noise uT ∼ N (0, I) for a given
video. Employing the reverse diffusion process [68], it iter-
atively refines the logit score towards cleaner estimations:

ût−1 =
√

1− ᾱt−1 − σ2
t

ût −
√
ᾱtfθ(C(ut), t,Z))√

1− ᾱt

+
√
ᾱt−1fθ(C(ut), t,Z)) + σtϵt ∈ RN ,

where σt =
√

(1− ᾱt−1)/(1− ᾱt)
√
1− ᾱt/ᾱt−1

(DDPM reverse process). When t = 1 at the last step,
û0 = fθ(C(u1), 1,Z) is directly used to remove stochastic-
ity at the end of inference process. Finally, we take sigmoid
to û0 to derive the final importance score ŝ0 ∈ (0, 1)N .

3.3. Summary Generation
From the raw importance score ŝ0, we apply the standard
knapsack-based approach to decide which frames to be in-
cluded in the final summary. To make this summary video
more realistic, it is common to choose at a semantic clip



level instead of individual frame level. We adopt a widely-
used Kernel Temporal Segmentation (KTS) [59, 84] to par-
tition a video into disjoint temporal intervals. We take the
average score among the corresponding frames as the clip-
level importance; i.e., vi =

∑ti+1

j=ti
ŝ0,j/(ti+1 − ti) for the

i-th clip composed of frames from ti to ti+1. Subsequently,
we select the clips based on vi by solving the binary knap-
sack problem (KP) [23] with dynamic programming [71]:

KP(v,w, ρ) ≡ argmax
s∈{0,1}M

M∑
i=1

visi s.t.
M∑
i=1

wisi ≤ ρN,

where v,w, ρ denotes the values of each clip (vi ∈ [0, 1]),
costs of selecting each clip, and the budget constraint ratio
(e.g., ρ = 0.15; 15% of the video length), respectively. If
the argmax has multiple solutions, we will abuse the nota-
tion and denote KP(v,w, ρ) as an arbitrary element of the
solution set.

4. Experiments
4.1. Experimental Settings
Datasets. We evaluate our method on three benchmarks.
TVSum [71] and SumMe [20] are traditional datasets, con-
taining 50 and 25 videos respectively and manually labeled
annotations by up to 20 raters. Mr. HiSum [74] is a large-
scale dataset, composed of 31,892 videos and importance
scores derived from YouTube Most Replayed statistics. It
provides an importance score s0 and a corresponding sum-
mary y0 for each video, averaged over 50,000+ viewers. We
use the default features for each dataset, GoogLeNet [75]
for TVSum and SumMe, and Inception-v3 [76] PCA-ed to
1024D [1] for Mr. HiSum.

We adopt two dataset splits. First, we randomly split
TVSum and SumMe into 7:1:2 for train, validation, and
test set, and report averaged test scores for 5 random splits
(namely, TVT). Also, following prior works [67, 77], we
include five-fold cross-validation results (5FCV), although
these may suffer from overfitting to the test set due to the
lack of explicit validation set, and thus may not generalize
well on unseen videos. For Mr. HiSum, we use its original
train/validation/test split. We run all experiments 5 times.
Evaluation Metrics. Following recent practice [22, 40, 55,
67], we report rank order statistics, Kendall’s τ [37] and
Spearman’s ρ [96], to asses how well the model ranks frame
importance. F1 score had been widely used in video sum-
marization, but recent literature [67, 77] reports that it is ex-
cessively sensitive to video segmentation and unreasonably
favors summaries composed of many short shots [55], while
disregarding longer key shots [67]. As an alternative to F1,
we propose additional metrics that represent the influence
of importance score through an analysis of the knapsack al-
gorithm in Sec. 4.4.

Method SumMe TVSum

τ ρ τ ρ

Random 0.000 0.000 0.000 0.000
Human 0.205 0.213 0.177 0.204

A2Summ [22] 0.088 0.096 0.157 0.206
VASNet [17] 0.089 0.099 0.153 0.205
PGL-SUM [3] 0.104 0.116 0.141 0.186
CSTA [67] 0.108 0.120 0.168 0.221

SummDiff (Ours) 0.133 0.148 0.173 0.226

Table 1. Comparison of models trained under TVT
(train/val/test split) on SumMe [20] and TVSum [71]. Best and
second-best results are boldfaced and underlined, respectively.

Method SumMe TVSum

τ ρ τ ρ

Random 0.000 0.000 0.000 0.000
Human 0.205 0.213 0.177 0.204

DSNet-AF [93] 0.037 0.046 0.113 0.138
DSNet-AB [93] 0.051 0.059 0.108 0.129
SUM-GAN [50] 0.049 0.066 0.024 0.031
AC-SUM-GAN [2] 0.102 0.088 0.031 0.041
CLIP-It [52] - - 0.108 0.147
iPTNet [34] 0.101 0.119 0.134 0.163
A2Summ [22] 0.108 0.129 0.137 0.165
VASNet [17] 0.160 0.170 0.160 0.170
PGL-SUM [3] - - 0.157 0.206
AAAM [77] - - 0.169 0.223
MAAM [77] - - 0.179 0.236
VSS-Net [85] - - 0.190 0.249
DMASum [81] 0.063 0.089 0.203 0.267
SSPVS [40] 0.192 0.257 0.181 0.238
CSTA [67] 0.246 0.274 0.194 0.255

SummDiff (Ours) 0.256 0.285 0.195 0.255

Table 2. Comparison of models trained under 5FCV (5-Fold
Cross Validation) on SumMe [20] and TVSum [71]. Training
under the 5FCV setting tends to overfit the test set.

Model τ ↑ ρ ↑ MAPρ = 50% ↑ MAPρ = 15% ↑

SUM-GAN [50] 0.067 0.095 56.62 23.56
VASNet [17] 0.069 0.102 58.69 25.28
AC-SUM-GAN [2] 0.012 0.018 55.35 21.88
SL-module [82] 0.060 0.088 58.63 24.95
PGL-SUM [3] 0.097 0.141 61.60 27.45
iPTNet [34] 0.020 0.029 55.53 22.74
A2Summ [22] 0.121 0.172 63.20 32.34
CSTA [67] 0.128 0.185 63.38 30.42

SummDiff 0.175 0.238 65.44 33.83

Table 3. Evaluation on Mr. HiSum [74]. See Appendix D for the
full table including standard deviations.

We further evaluate our method on video highlight de-
tection following [74]. First, we uniformly divide the in-
put video into 5-second-long shots and calculate the average
frame scores for each shot. The top ρ ∈ {0.15, 0.5} of these
shots are designated as ground truth highlights. We report
Mean Average Precision (MAP), following [28, 56, 84].
See Appendix E for more implementation details.



4.2. Results and Analysis
Considering the innate subjectivity of video summarization,
we train our model to learn from each individual score, al-
lowing it to capture multiple ways of summarization for
each video. Specifically, we use 20 individual importance
scores per video in TVSum [71] and 15–18 individual bi-
nary summaries in SumMe [20], since SumMe does not pro-
vide individual importance scores. Tab. 1 and 2 show that
SummDiff achieves the best performance on SumMe and
TVSum, with the sole exception of TVSum in 5FCV. While
DMA-SUM [81] performs the best on TVSum in 5FCV,
it significantly underperforms on SumMe, indicating that
its high performance on TVSum does not generalize well.
Comparing TVT and 5FCV, most models exhibit a consid-
erable performance gap. This demonstrates how much ex-
isting models have overfitted to the test set under the con-
ventional 5FCV protocol. We adopt TVT as a remedy to
this, but due to the extremely small size of these datasets,
the reliability of evaluation is still limited [74].

On the larger Mr. HiSum, we train our model using the
aggregated annotation, as it does not provide individual an-
notations. This evaluation mainly aims to verify scalabil-
ity of SummDiff on a large-scale dataset. Tab. 3 presents
the performance on Mr. HiSum, where SummDiff consis-
tently outperforms all baselines across all metrics, signifi-
cantly surpassing the strongest competitor, CSTA [67] with
a large margin. These results highlight scalability and effec-
tiveness of our method even under the single-label setting.

4.3. Qualitative Demonstration
We demonstrate how our method discovers a variety of pos-
sible summaries for a video. Specifically, we generate video
summaries for the 50 videos in TVSum using CSTA, PGL-
SUM, VASNet, and ours. For each generated summary, we
measure the Kendall’s τ with all 20 ground truth annota-
tions, respectively. Considering τ ≥ 0.25 as the threshold
for the summary to be matched with the annotator, Fig. 3
shows if the generated summary for a video (row) matches
with each annotator (column). As the baselines (CSTA,
PGL-SUM, and VASNet) summarize a video deterministi-
cally, each cell is either completely matched (1) or not (0).
If the summary matches with majority of annotators (e.g.,
video 29 for CSTA), it means the deterministic summary
matches with the dominant way of summarization for the
video. If it matches only with a few annotators (e.g., video
24 for CSTA), it means the generated summary matches
with a minor opinion. For our method, we generate 100
summaries per video from different Gaussian noise vectors,
and mark each cell with the ratio of summaries that match
with each annotator. The darker the cell colors are for each
row, the more various ways of summaries have been discov-
ered by our method. Comparing the heat maps, we clearly
observe that SummDiff generates significantly more various

Figure 3. Ratio of summaries with τ ≥ 0.25 for each
video-annotator pair. The heatmap illustrates how closely each
method’s summary matches with individual annotations. This
comparison reveals the extent to which each method captures the
varied human summaries. SummDiff covers a larger area of the
heatmap, which indicates better coverage over various summaries.

Figure 4. Distribution of true and predicted summaries of
given videos. SummDiff can generate various summaries and
cover the targeted distribution of summaries, while baselines de-
terministically predicts a single summary.

summaries covering multiple viewpoints, better reflecting
the distribution of annotated summaries.

We further illustrate the variation and quality of gener-
ated summaries in Fig. 4. The summaries annotated by hu-
man raters (• Annotator) and those generated by ours (•
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Figure 5. Demonstration of video summaries generated by competing methods on a TVSum video. Shaded parts indicate the segments
selected by each method, and the two rows of edged boxes within each method indicate the two distinct true annotations. The results clearly
demonstrate the effectiveness of SummDiff in capturing multiple plausible summaries for a video. See another example in Appendix F.

SummDiff) and baselines (• CSTA, • PGL-SUM, and •
VASNet) are projected onto the first two principal compo-
nents, which are computed using only the human-annotated
summaries. The distribution of true summaries are dis-
played using a contour map, obtained by Gaussian kernel
density estimation. It demonstrates that our SummDiff gen-
erates multiple summaries closely aligned with the distri-
bution of true annotations. For example, video 22 (top-
left) roughly has three ways to summarize, according to the
human raters. SummDiff generates summaries dominantly
covering the two modes in the lower-left region, and one
case in the upper-right mode. In contrast, baselines produce
a single, less accurate summary, failing to account for the
variety inherent in human-annotated summaries. We ob-
serve similar patterns in the other three plots as well. Fig. II
provides more examples in Appendix C.

Fig. 5 illustrates example summaries generated by
CSTA, A2Summ, PGL-SUM, VASNet, and our SummDiff,
for a video selected from TVSum test set. Shaded parts indi-
cate the segments selected by each method (note that Sum-
mDiff can generate two different summaries while base-
lines always produce a single summary), and the two rows
of edged boxes within each method indicate two different
true annotations. These results demonstrate that SummDiff
produces more accurate and various summaries, effectively
capturing multiple plausible summarizations for each video.

4.4. Metrics Inspired from Knapsack Optimality
In spite of nontrivial impact of the knapsack at the end of
the summary generation, previous evaluation metrics have
focused only on the accuracy of the importance scores.
Through a thorough analysis on the knapsack problem (KP),
we provide additional metrics that measure the contribution
of importance scores. By accounting for knapsack optimal-
ity and clip-level weights, our new metrics are capable of
assessing the predicted importance score more accurately
than existing metrics such as F1 or ranking-based ones.

Confidence of Importance Score. First, we analyze the
conditions under which the same optimal KP solution re-
mains valid despite some perturbations to the profits v.
These perturbations can be a modeling to the imperfect es-
timation of the importance scores in video summarization.

Let y∗ be the optimal solution to the original KP (i.e.,
y∗ = KP(v,w, ρ); see definition in Sec. 3.3) and Γ ⊆
[N ] ≡ {n ∈ N | 1 ≤ n ≤ N} be an arbitrary subset
of items associated with the perturbed profits v′

i = vi +
∆vi, where ∆vi = 0 if i /∈ Γ and N is the number of
items. In our case, v ∈ RN is the ground truth importance
scores, y∗ ∈ [0, 1]N is the ground truth summary, and the
perturbed profit v′ ∈ RN corresponds to the imperfectly
predicted importance scores. We further define two disjoint
subsets of Γ. First, Γ+

0 ≡ {i ∈ Γ | y∗i = 0,∆pi > 0}
refers to the set of items excluded in the original optimal
solution but undergoing increased profit, and Γ−

1 ≡ {i ∈ Γ |
y∗i = 1,∆pi < 0} is the opposite, the set of items included
in the optimal solution but experiencing a decreased profit.
Then, Hifi et al. [23] claims that the solution y∗ remains
optimal for the perturbed KP, i.e., y∗ = KP(v,w, ρ) =
KP(v′,w, ρ), if∑
i∈Γ+

0

∆vi −
∑
i∈Γ−

1

∆vi ≤ v · KP(v,w, ρ)−max(Ψ+,Ψ−),

where Ψ+ ≡ maxi∈Γ+
0
[v · KP(v − viêi,w, ρ − wi/N)]

is the maximum value of the KP when removing any item
from Γ+

0 and adjusting the constraint, and similarly, Ψ− ≡
maxi∈Γ−

1
[v · KP(v− viêi,w, ρ)] is the maximum value of

the KP when removing any item from Γ−
1 .

Based on this theorem we propose a new metric, Confi-
dence of Importance Score (CIS), to estimate how close
the predicted scores are to the ground truth:

CIS =
∑
i∈Γ+

0

∆vi−
∑
i∈Γ−

1

∆vi−v·KP(v,w, ρ)+max(Ψ+,Ψ−).



If CIS ≤ 0, the theorem indicates that the predicted impor-
tance score v̂ is guaranteed to induce the true KP solution
y∗. If CIS > 0, v̂ does not guarantee to induce the KP
solution, but a lower CIS would indicate a solution closer
to y∗ than a higher one. That is, a smaller CIS indicates a
stronger confidence in satisfying the inequality, indicating
a higher chance for the solution of the perturbed KP to be
identical to that of the original KP.

Unlike F1 that simply measures how close the predicted
summary is to the ground truth, our CIS accounts for the
confidence that the predicted score will exactly induce the
true summary. This is particularly important in video sum-
marization, since the importance score itself is subjective
and often noisy, requiring robust selection of frames.
Weighted Inclusion Ratios. Analyzing the sensitivity of
the KP optimum to the perturbation of the importance score,
Belgacem and Hifi [5] established bounds of the perturbed
profits to retain the original optimum. These intervals are

y∗
i = 1 → ∆vi ∈ I1i =

[
max

(
∆−

i , wi max
k∈Γ

µk − pi

)
,+∞

)
y∗
i = 0 → ∆vi ∈ I0i =

(
−∞,min

(
∆+

i , pi − wi min
k∈Γ

µk

)]
,

where ∆+
i = v · (KP(v,w, ρ) − KP(v − viêi,w, ρ −

wi/N),∆−
i = v · (KP(v − viêi,w, ρ) − KP(v,w, ρ)),

and µk denotes the critical ratio of k ∈ Γ: µk = CR([N ] \
{k}, ρ − 1{y∗

k=0} · wk/N), with CR(A, γ) = vs/ws and

s = min{l|
∑l

i=1 vs/ws > ρ} is the index of the critical
item. The items in A are considered in descending order
of vs/ws. To sum up, if the perturbed profit resides in the
interval v′i ∈ I

y∗
i

i , it is guaranteed that the solution of per-
turbed KP is identical with that of the original KP.

We propose Inclusion Ratio (IR) to estimate how much
the predicted scores fall into the safe bounds; for the i-th
importance score, IRi ≡ |{∆vi ∈ I

y∗
i

i | i ∈ [N ]}|/N .
This ratio reflects the proportion of the predicted scores that
retain the KP solution. We propose the Weighted average
of the Inclusion Ratios (WIR) as a metric to measure the
proximity of the predicted score to the ground truth: WIR ≡∑n

i=1

(
wi∑n

j=1 wj
IRi

)
, where wi denotes the segment length

of each shot.
Weighted Sum of Errors (WSE). Additionally, we com-
pare a weighted sum of the errors

∑
i wi∆pi, where wi is

the segment length of each clip.
Comparison. Tab. 4 compares several competitive methods
using these new metrics. Our SummDiff achieves the best
performance in all metrics, indicating that the summaries
generated by our method are closer to the optimal knapsack
result, under the theoretical analysis in literature.
Discussion. Our newly proposed metrics, WIR and CIS,
evaluate the quality of the generated importance scores

Method τ ↑ ρ ↑ CIS ↓ WIR ↑ WSE ↓

Uniform-Random 0.000 0.000 9.27 0.45 46.82
SL-module [82] 0.060 0.088 6.83 0.56 30.09
CSTA [67] 0.128 0.185 6.23 0.57 25.76
PGL-SUM [3] 0.097 0.141 6.14 0.58 26.22
VASNet [17] 0.069 0.102 6.25 0.59 26.79
A2Summ [22] 0.121 0.172 6.65 0.55 30.55
SummDiff 0.175 0.238 5.96 0.61 25.24

Table 4. Evaluation using our new metrics proposed in Sec. 4.4.

Module τ ↑ ρ ↑

Encoder Only 0.071 0.104
(+) Video Importance Denoiser 0.079 0.116
(+) Learnable Embedding 0.086 0.124
(+) AdaLN (τ ) 0.145 0.204
(+) AdaLN (τ ,Φ) 1 layer 0.171 0.232

(-) Quantization 0.125 0.174
(+) Classifier-free Guidance (CFG) [24] 0.175 0.238
(+) Self-attention Guidance (SAG) [30] 0.177 0.239

Table 5. Effect of individual components

in two aspects. WIR measures how many importance
scores are individually trustworthy, weighted by the dura-
tion. Specifically, WIR first computes the safe interval Ii
for each importance score such that the true summary re-
mains unchanged. Then, given the predicted importance
scores v̂, it measures how many of them fall within their
corresponding safe intervals v̂i ∈ Ii.

On the other hand, CIS quantifies the risk that the pre-
dicted importance scores will lead to a different summary
than the one generated using the true importance scores. In
other words, CIS evaluates the overall chance how likely the
predicted score vector v̂, as a whole, is to give a summary
different from the true one. With the analysis of knapsack
optimality, these metrics would better measure the accuracy
of predicted importance score, considering the fidelity of fi-
nal summary after knapsack to the ground truth, than F1 or
ranking-based metrics.

4.5. Ablation Study
We report ablation study on Mr. HiSum [74] in Tab. 5,
comparing performance adding a component step-by-step.
Starting from a two-layer transformer encoder predicting
the importance score, adding our denoiser with a naively
summed query Qt = C(ut)+τ+Φ improves the Kendall’s
τ (0.071 → 0.079). We observe further slight improve-
ment (0.079 → 0.086) when we replace the fixed random
score embeddings with learnable ones (Learnable Embed-
ding). Introducing AdaLN transformation [58] on the time
(τ ) and positional (Φ) encodings further improves τ to
0.145 and 0.171, respectively. As we adopt the quanti-
zation idea, grouping nearby scores into a unified embed-
ding, in Sec. 3.2 with this change, we experiment with-
out it (using a sinusoidal function [80] instead), and ob-
serve significant performance drop (0.171 → 0.125). This
confirms that quantization is superior to treating the score



Model τ ↑ ρ ↑

CSTA [67] 0.128 0.185
SummDiff (1 step) 0.170 0.234
SummDiff (10 steps) 0.175 0.238
SummDiff (100 steps) 0.182 0.245

Table 6. Performance with various numbers of DDIM steps

Figure 6. Measured E|{y∗}| and E[∆y∗] with respect to the
quantization strength K. A larger K is associated with a smaller
number of allowed solutions for the given KP.

as a continuous scalar. On top of this, we combine our
model with two widely-known ideas, classifier-free guid-
ance (CFG) [24] and self-Attention guidance (SAG) [30],
for further improvement. See Appendix B for details.
Number of DDIM Steps. Tab. 6 suggests that SummDiff
outperforms CSTA [67], the best-performing baseline, even
with a single DDIM [68] step. Beyond this, SummDiff fur-
ther improves its performance with more DDIM steps.
Effect of Quantization Strength. Solving a KP usually has
a unique solution if the profits vi are continuous. As quan-
tization unifies importance score values within the same in-
terval to a single embedding, it may lead to multiple solu-
tions to KP(ṽ,w, ρ), where ṽ is a quantized version of v.

To analyze this effect, we measure the average number of
solutions Ev1∼U(0,1)⊗N [|{y∗ ∈ {0, 1}N |y∗ = KP(ṽ,w, ρ
)}|] while varying K, taking expectation over v, which
is a value vector sampled from a joint uniform dis-
tribution. We also consider the average L1 differ-
ence between two summaries, Ev1∼U(0,1)⊗N [∆y∗] ≡
Ev1∼U(0,1)⊗N ,v2∼N (v1,

1
K IN )[∥KP(ṽ1,w, ρ)−KP(ṽ2,w,

ρ)∥1], obtained by solving the KP with two similar but dis-
tinct value vectors, i.e., v2 = v1 + ∆v, where ∆v ∼
N (0, 1

K IN ).
We numerically analyze the relation between these two

values, which indicate the scale of multiplicity of the solu-
tions to the KP, and the quantization strength K. As shown
in Fig. 6, both the number of solutions |{y∗}| and the sum-
mary deviation ∆y∗ decrease with larger K, suggesting
more accurate summaries.

To sum up, increasing the quantization strength K re-
duces the number of multiple optimal solutions, leading to
a more accurate summary. However, an excessively higher
K leads to insufficient samples per bin, degrading the over-
all performance. See Appendix A for more ablation studies.

5. Related Work
Video Summarization. Early models primarily rely on
heuristic unsupervised learning [13, 15, 29, 38, 47, 49–51,
53, 71, 83] to select important or diverse frames, struggling
with generalization. Benefiting from annotated datasets,
supervised methods [8, 38, 57, 59, 60] have emerged.
DSNet [93] and iPTNet [34] improve keyframe selection
using frame-level annotations, and SL-Module [82] cap-
tures high-level features. With the advent of deep learn-
ing, RNNs [84, 88–90] and attention mechanism [4, 6, 33,
35, 39, 42, 77, 85, 94] have been adopted to capture tem-
poral dependencies in videos. Particularly, VASNet [17]
and PGL-SUM [3] capture both local and global frame de-
pendencies using self-attention. DMASum [81] introduces
mixture of attention layer mitigate the key Softmax Bot-
tleneck. SUM-GAN [50] and AC-SUM-GAN [2] leverage
generative adversarial networks.

Multimodal approaches [32, 91] integrate audio or tex-
tual data to video summarization. Multimodal transformers
are adopted to link frames with corresponding captions, im-
proving context-aware summaries, by CLIP-It [52], MSVA
[18], SSPVS [40], and A2Summ [22]. CSTA [67] addresses
computational complexity by using CNN-based spatiotem-
poral attention for efficient frame selection. Unlike these
deterministic summarizers, our approach generates multiple
plausible summaries by capturing the distribution of video
summaries with various perspectives.

Diffusion for Video Tasks. Diffusion [66] have emerged
as a groundbreaking tool in high-quality image generation
[21, 25, 54, 63, 64, 69, 70] and super-resolution [14, 36, 61,
65]. Recently, they are extended to video generation [7, 11,
16, 19, 26, 27, 44], joint video and audio generation [41,
62, 73], video editing [9, 10, 79], video inpainting [87] and
prediction [31, 86]. Furthermore, they are applied to video
understanding tasks like moment retrieval [43, 48], video
object segmentation [92, 95], action segmentation [45].

6. Summary
Video summarization is inherently subjective since people
have different perspectives of a good summary. We sug-
gest a generative viewpoint of this task where the model
learns the distribution of good summaries, in contrast to the
traditional approach of aggregated importance score regres-
sion. Our proposed SummDiff model, adopting diffusion
models for video summarization for the first time, is able
to generate multiple good summaries conditioned on the in-
put video. Our model not only outperforms other baselines
but also demonstrates the ability to generate accurate sum-
maries customized to the individual annotators. We further
propose additional metrics that measure the quality of the
predicted importance scores through an insight from the ac-
tual summary generation using knapsack.



Acknowledgments
This work was supported by Samsung Electronics
(IO240512-09881-01), Youlchon Foundation, NRF
grants (RS-2021-NR05515, RS-2024-00336576, RS-
2023-0022663) and IITP grants (RS-2022-II220264,
RS-2024-00353131) by the government of Korea.

References
[1] Sami Abu-El-Haija, Nisarg Kothari, Joonseok Lee, Paul

Natsev, George Toderici, Balakrishnan Varadarajan, and
Sudheendra Vijayanarasimhan. Youtube-8M: A large-scale
video classification benchmark. arXiv:1609.08675, 2016. 4

[2] Evlampios Apostolidis, Eleni Adamantidou, Alexandros I
Metsai, Vasileios Mezaris, and Ioannis Patras. AC-SUM-
GAN: Connecting actor-critic and generative adversarial net-
works for unsupervised video summarization. IEEE Trans-
actions on Circuits and Systems for Video Technology, 31(8):
3278–3292, 2020. 1, 4, 8, iii

[3] Evlampios Apostolidis, Georgios Balaouras, Vasileios
Mezaris, and Ioannis Patras. Combining global and local at-
tention with positional encoding for video summarization. In
IEEE international symposium on multimedia (ISM), 2021.
1, 2, 4, 7, 8, i, iii

[4] Evlampios Apostolidis, Georgios Balaouras, Vasileios
Mezaris, and Ioannis Patras. Summarizing videos using con-
centrated attention and considering the uniqueness and diver-
sity of the video frames. In ICMR, 2022. 8

[5] Tarik Belgacem and Mhand Hifi. Sensitivity analysis of the
knapsack problem: Tighter lower and upper bound limits.
Journal of systems science and systems engineering, 17:156–
170, 2008. 7

[6] Manjot Bilkhu, Siyang Wang, and Tushar Dobhal. Attention
is all you need for videos: Self-attention based video sum-
marization using universal transformers. arXiv:1906.02792,
2019. 8

[7] Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dock-
horn, Seung Wook Kim, Sanja Fidler, and Karsten Kreis.
Align your latents: High-resolution video synthesis with la-
tent diffusion models. In CVPR, 2023. 8

[8] Sijia Cai, Wangmeng Zuo, Larry S Davis, and Lei Zhang.
Weakly-supervised video summarization using variational
encoder-decoder and web prior. In ECCV, 2018. 8

[9] Duygu Ceylan, Chun-Hao P Huang, and Niloy J Mitra.
Pix2video: Video editing using image diffusion. In ICCV,
2023. 8

[10] Wenhao Chai, Xun Guo, Gaoang Wang, and Yan Lu. Stable-
Video: Text-driven consistency-aware diffusion video edit-
ing. In ICCV, 2023. 8

[11] Haoxin Chen, Yong Zhang, Xiaodong Cun, Menghan Xia,
Xintao Wang, Chao Weng, and Ying Shan. VideoCrafter2:
Overcoming data limitations for high-quality video diffusion
models. In CVPR, 2024. 8

[12] Ting Chen, Ruixiang Zhang, and Geoffrey Hinton. Analog
bits: Generating discrete data using diffusion models with
self-conditioning. In ICLR, 2022. 3

[13] Wen-Sheng Chu, Yale Song, and Alejandro Jaimes. Video
co-summarization: Video summarization by visual co-
occurrence. In CVPR, 2015. 8

[14] Hyungjin Chung, Byeongsu Sim, and Jong Chul Ye.
Come-closer-diffuse-faster: Accelerating conditional diffu-
sion models for inverse problems through stochastic contrac-
tion. In CVPR, 2022. 8

[15] Sandra Eliza Fontes De Avila, Ana Paula Brandao Lopes,
Antonio da Luz Jr, and Arnaldo de Albuquerque Araújo.
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A. Additional Ablation Studies

Effect of Quantization. We explore various number of seg-
ments (K) for the codebook C, uniformly splitting the score
range [0, 1]. According to Tab. I, the best performance is
achieved around 200 to 400. With K < 200, the perfor-
mance degrades because it limits the ability of our model to
distinguish different scores, treating a wide range of scores
with the same embedding. With too large K, on the other
hand, the model would suffer from the lack of samples per
each bin, degrading the performance.

K τ ρ

5 0.145 0.200
10 0.147 0.202
50 0.147 0.202

100 0.171 0.235
200 0.175 0.238
400 0.173 0.237
800 0.172 0.235

Table I. Effect of quantization strength K

Visualization of Histograms from Quantization. To fur-
ther visualize the effect of quantization with varying K, we
illustrate the distribution of quantized scores for different
values of K using histograms, and count the number of
scores falling into each bin on a subset of Mr. HiSum dataset
shown in Fig. I. When K is too small (left), quantization
becomes too coarse, collapsing diverse scores into the same
bin and causing more multiple optimal solutions observed
in Fig. 6. When K is too large (right), bins become too
sparse, leading to unstable estimates with insufficient sam-
ples per bin. Both extremes hurt performance. As shown in
Appendix A, the best results are achieved when K strikes a
balance between granularity and robustness.

Figure I. Histogram of quantized importance scores for varying K
on a subset of the Mr. HiSum dataset.

Inference Time. The iterative sampling process in gen-
erative diffusion might raise concerns about slower infer-
ence time. We report the average inference time of top-
performing models under the same condition in Tab. II.
SummDiff (1 step) takes comparable time to others includ-
ing CSTA [67], and Tab. 6 confirms that this setting outper-
forms other baselines. In short, SummDiff (1 step) achieves

moderately fast inference time with a reasonably strong
summarization performance, effectively balancing them.

Model Inference Time (ms)

CSTA [67] 11.70 ± 0.11
PGL SUM [3] 19.32 ± 0.50
SL Module [82] 5.20 ± 0.62
VASNET [17] 1.11 ± 0.23
A2Summ [22] 9.10 ± 2.25

SummDiff (1 step) 11.02 ± 1.92
SummDiff (10 steps) 49.73 ± 1.55

Table II. Comparison on inference time

Training on aggregated scores. To further investigate
the importance of training on individual annotator scores,
we conduct additional experiments on SumMe with vari-
ous number of annotations, |R| ∈ {5, 10,All}. We train
a model on a randomly selected set of annotations of size
|R|, either on individual annotations or on their aggregated
scores. As seen in the table, training on individual scores
consistently outperforms. This supports our claim that us-
ing individual scores aligns well with our generative ap-
proach and leads to higher-quality summaries.

|R| Training τ ρ
5 Agg 0.130 0.144

Ind 0.211 0.236
10 Agg 0.145 0.161

Ind 0.227 0.253
All Agg 0.176 0.196

Ind 0.256 0.285

Table III. Performance comparison on SumMe when training with
aggregated (Agg) versus individual (Ind) annotator scores, across
different numbers of annotations |R| ∈ {5, 10,All}.

B. Classifier-free Guidance and Self-attention
Guidance

We integrate two widely-known ideas for further im-
provement of SummDiff. First, we adopt the classifier-
free guidance (CFG) [24], f̃θ(C(ut), t,Z) = (1 +
w)fθ(C(ut), t,Z) − wfθ(C(ut), t,∅), where ∅ is the null
(black) video, and w determines the extent to which uncon-
ditioned information is used at inference.

Second, we add self-Attention guidance (SAG) [30],
leveraging the intermediate self-attention maps from diffu-
sion models to improve stability. It works by selectively
blurring the areas that the diffusion models focus on during
each step, using an adversarial approach to adjust and guide



the model’s attention as it progresses. Specifically,

f̃θ(C(ut), t,Z) = f̃θ(C(ut), t,Z) (1)

+ (1 + s)(f̃θ(C(ut), t,Z))− f̃θ(C(ût), t,Z)

where At denotes the attention map, Mt = 1(At > ψ)
is a binary mask indicating where At exceeds a threshold
ψ, and ⊙ is the Hadamard product. The intermediate re-
construction C(ût) selectively combines the original signal
C(ut) and its noised version C(ũt) based on Mt by

C(ût) = (1−Mt)⊙ C(ut) +Mt ⊙ C(ũt), (2)

where C(ũ0) is obtained by convolving C(u0) with a Gaus-
sian kernel Gσ . Finally, C(û0) is computed by

C(û0) = (C(ut)−
√
1− ᾱtfθ(C(ut), t,Z)/

√
ᾱt. (3)

C(ũt) is obtained by diffusing with noise fθ(C(ut), t,Z)
from C(ũ0).

In Tab. 5, we observe extra gains with these, achieving
0.177 of τ . A similar pattern of gradual improvement is
observed with Spearman’s ρ, as seen in Tab. 5.

C. Qualitative Results on Contours
We provide additional examples of generated summaries in
Fig. II. The summaries annotated by human raters (• Anno-
tator) and those generated by ours (• SummDiff) and three
baselines (• CSTA, • PGL-SUM, and • VASNet) are pro-
jected to 2D using PCA. The annotated summaries are vi-
sualized using a blue contour map created through Gaus-
sian kernel density estimation. This highlights that Sum-
mDiff produces a diverse range of summaries that closely
match those provided by human annotators. For instance, in
the top-right plot for video 48, human evaluators identified
three distinct ways to summarize the content. SummDiff
successfully generates summaries that capture all three vari-
ations. In contrast, the baseline models typically produce a
single, less accurate summary, failing to capture the vari-
ability seen in human-generated summaries. Similar trends
are observed across the other three plots.

D. Evaluation Results with Standard Deviation
Tab. IV shows the full evaluation results from Tab. 3 with
standard deviation. As seen in the table, our method is su-
perior to all other baselines statistically significantly.

E. Implementation Details
We uniformly sample frames from each video at 1 fps
matching the ground truth label provided in the Mr. HiSum
dataset. For TVSum and SumMe, the videos are subsam-
pled to 2 fps as in [18, 32, 40, 50, 67, 84]. For Mr. HiSum,
we employ 2 transformer layers for visual encoding and 2

Figure II. Distribution of ground truth and generated summaries of
selected videos

additional layers for denoising. Each layer has a hidden
size of 256, 8 attention heads, and feed-forward network
with a dimensionality of 1024. For TVSum and SumMe
we adopt 1D convolution layer followed by an MLP for the
decoder due to the small dataset size. We use AdamW op-
timizer [46] with cosine annealing [78], gradually reducing
the learning rate from 5 · 10−5 initially. We also used EMA
decay of 0.999 for Mr. HiSum. We set the batch size to
256, and train up to 200 epochs. ϵ is set to 10−3 when clip-
ping s0. For inference, we take 10 DDIM [68] steps by
default. We conduct all experiments on a single NVIDIA
A5000 GPU.

We investigate various batch sizes from the set
{32, 64, 256} and determined that a batch size of 256
yielded the best performance for SummDiff model. We ap-
ply tuning procedures consistently across all models. For
SumMe and TVSum, batch size of 20 and 40 yielded the
best result respectively.

Furthermore, we experiment with learning rates and
weight decay within the range of {10−3, 5 · 10−4, 10−4,
5 ·10−5, 10−5}. Learning rate of 5 ·10−5 and weight decay
of 5 · 10−4 is found to be optimal for our SummDiff model,
and similar tuning procedure has been applied to other mod-
els.



Model Year τ ↑ ρ ↑ MAPρ = 50% ↑ MAPρ = 15% ↑

SUM-GAN [50] 2017 0.067±0.018 0.095±0.023 59.50±0.16 24.30±0.19
VASNet [17] 2019 0.069±0.000 0.102±0.000 58.69±0.30 25.28±0.40
AC-SUM-GAN [2] 2020 0.012±0.003 0.018±0.003 56.40±0.06 21.70±0.08
SL-module [82] 2021 0.060±0.002 0.088±0.003 58.63±0.13 24.95±0.13
PGL-SUM [3] 2021 0.097±0.001 0.141±0.001 61.60±0.14 27.45±0.15
iPTNet [34] 2022 0.020±0.003 0.029±0.004 55.53±0.25 22.74±0.13
A2Summ [22] 2023 0.121±0.001 0.172±0.001 59.18±0.13 30.70±0.21
CSTA [67] 2024 0.128±0.004 0.185±0.006 62.25±0.15 28.42±0.33

SummDiff Ours 0.175±0.005 0.238±0.004 65.44±0.19 33.83±0.44

Table IV. Comparison of models trained with Mr. HiSum

(b) video_15. “How to Clean Your Dog's Ears - Vetoquinol USA”
0s 20s 40s 60s 80s 100s 119s 139s 159s 179s 199s

PGL-SUM

VASNet

CSTA

SummDiff

A2Summ

Annotator 1 Annotator 2

Figure III. Additional demonstration of video summaries generated by competing methods on a TVSum video. Shaded parts indicate
the segments selected by each method, and the two rows of edged boxes within each method indicate two different true annotations. The
results clearly demonstrate the effectiveness of SummDiff in capturing multiple plausible summaries for a video.

F. Additional Qualitative Results
As illustrated in Fig. 5, we visualize the summary of videos
generated by various models. Specifically, CSTA [67],
A2Summ [22], PGL-SUM [3], VASNet [17] is compared
against our model, SummDiff. All videos are selected from
the test set of TVSum from 5-fold cross validation experi-
ment. Two different summary annotations are visualized in
the first and second rows using black and red boxes. The
results demonstrate that SummDiff predicts both more ac-
curate and various summaries compared to other baseline
models.
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