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Abstract

Novel view synthesis has been heavily driven by NeRF-
based models, but these models often hold limitations with
the requirement of dense coverage of input views and ex-
pensive computations. NeRF models designed for scenar-
ios with a few sparse input views face difficulty in being
generalizable to complex or unbounded scenes, where mul-
tiple scene content can be at any distance from a multi-
directional camera, and thus generate unnatural and low
quality images with blurry or floating artifacts. To accom-
modate the lack of dense information in sparse view scenar-
ios and the computational burden of NeRF-based models in
novel view synthesis, our approach adopts diffusion mod-
els. In this paper, we present PoseDiff, which combines the
fast and plausible generation ability of diffusion models and
3D-aware view consistency of pose parameters from NeRF-
based models. Specifically, PoseDiff is a multimodal pose-
conditioned diffusion model applicable for novel view syn-
thesis of unbounded scenes as well as bounded or forward-
facing scenes with sparse views. PoseDiff renders plausible
novel views for given pose parameters while maintaining
high-frequency geometric details in significantly less time
than conventional NeRF-based methods.

1. Introduction
The synthesis of photorealistic images is a popular re-

search topic in computer vision and graphics. The objec-
tive of novel view synthesis is to render a scene from un-
seen viewpoints when a certain set of observed viewpoints
are given. Recently, this task has increasingly gained spot-
light in the community [3, 14, 21] along with the success
of coordinate-based neural representations [34, 43, 36, 7],
such as Neural Radiance Fields (NeRF) [38]. NeRFs learn
to effectively represent objects and scenes in a 3D space, by
parameterizing the per-coordinate volumetric density and
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color of a scene with the weights of a multilayer perceptron
(MLP). With this simple yet effective architecture, NeRF
models have emerged as powerful representations for novel
view synthesis, demonstrating state-of-the-art performance.

However, most existing NeRF-based models [38, 65, 32,
1, 42, 53, 6, 53, 18, 2] require a dense and large-scale cov-
erage of the scene as input to achieve the reportedly high
quality performance. This causes practical issues in various
applications, such as robotics, VR, and autonomous driv-
ing, where input is often very sparse with only one to few
views available per object or scene of interest. It can also
be a problem as large-scale real datasets often entail issues
related to human or societal biases, copyright, and privacy.

In order to circumvent the need for dense scene cover-
age, various approaches [5, 8, 20, 29, 22, 64, 48, 60, 56, 31,
62, 12, 53, 35, 22] have been proposed. Many of these mod-
els are first expensively pretrained for the same task on a
large-scale multi-view dataset with many scenes, then fine-
tuned for a sparse set of images for a specific scene. While
these models demonstrate relatively superior results, they
involve challenges including obtaining a large enough pre-
training dataset and reaching generalizability across various
novel domains at test time.

Opposed to the pretraining-finetuning approach, test-
time optimization approaches [10, 63, 49, 33, 19, 41, 26,
28, 52, 9] optimize their networks from scratch, solely us-
ing the given images of a particular scene. Often with ex-
tra supervision (e.g., depth) and regularization techniques,
these approaches extend generalizability of the models to
various viewpoints. Yet, they are limited as they rely heav-
ily on external supervision [10, 63, 49] which is not al-
ways available, or are viable only for rendering in low-
resolution or simple scenes (e.g., with single objects in the
center of the scene, with uniform backgrounds, or synthetic
scenes) [63, 26], contrary to realistic in-the-wild scenes.

Particularly, previous sparse-view-based models strug-
gle to generate photorealistic novel views for complex or
unbounded scenes, where the camera may point at any di-
rection of the scene with more than one scene content lo-
cated at an arbitrary distance from the camera. As shown



Figure 1. Failure examples of previous models: (a) Models for sparse input views (e.g., RegNeRF [41]) are unable to model high-
frequency details, especially in the peripheral areas (top example), and fail to render any meaningful views for unbounded scenes, even
with a large number of input views (bottom example). (b) Models designed to handle unbounded scenes (e.g., Mip-NeRF 360 [2]) also
struggle similarly with significantly reduced input views.

Figure 2. Few-view based models often result in low quality ren-
derings without purposefully injecting a deterministic inductive
bias for object centeredness.

in Fig. 1(a), models for sparse input views (RegNeRF [41])
find difficulty in complex scenes with high-frequency de-
tails and content in the periphery of the scene (top) and un-
bounded scenes (bottom), resulting in unclear and incon-
sistent floating artifacts. Similar observations can be found
in Fig. 1(b) with models that reconstruct unbounded scenes
with dense input views (e.g., Mip-NeRF 360 [2]), with dras-
tically reduced number of input views. Moreover, without
the intentionally designed supervision with a deterministic
inductive bias based on the main object being in the center
of the scene, few-view based models often fail to converge
to a level of photorealistic rendering. This phenomenon was
especially prominent in extremely sparse scenarios (e.g., 3
or 6 input views), even for very simple scenes regardless of
the number of training iterations, as shown in Fig. 2. Over-
all, it can be summarized that models still struggle to learn
from the sparse information of images and poses.

Another issue with NeRF-based models is the painfully
expensive and long computation times necessary to train
and inference the models. Although the results may not
be favorable, as demonstrated above, it may still take up
to several days to train a NeRF model for a single scene.

Therefore, in order to fill in the sparse information and

reduce computation times in conventional approaches to
sparse view based novel view synthesis, we propose to uti-
lize the ability of diffusion models in generation based on
common sense and prior knowledge. Specifically, we plan
to take advantages of the generative powers in formulating
plausible views and relatively shorter computation times of
diffusion models, while maintaining the strength of NeRFs
in modeling with 3D global view consistency by leveraging
pose parameters from NeRF.

In this paper, we present PoseDiff, a novel method to
generate realistic novel views for unbounded scenes from
sparse inputs, and our main contributions:

• a 3D-aware diffusion model conditioned on camera
pose parameters, that can augment information on un-
seen views in sparse input scenarios.

• a notable reduction in training and inference time for
novel view synthesis, especially of unbounded scenes.

• a resultant reduction in unnatural rendering outcomes
with floating artifacts, with the synthesis of plausible
and realistic novel views.

2. Related Work

Sparse View Based Novel View Synthesis. One way to
handle the lack of dense input information is to take ad-
vantage of prior knowledge accumulated with models pre-
trained for similar tasks on larger datasets with dense mul-
tiple views of scenes [5, 8, 20, 29, 22, 48, 60, 56, 31, 62].
These approaches involve scene priors learned via an array
of methods, such as self-supervision for equivariance [12]
and cycle-consistency [35], 3D cost volume from image
warping as input to a 3D CNN [5, 22], and extraction of



local CNN features of images [8, 64]. While these mod-
els show impressive results, they hold limitations includ-
ing the difficulties of collecting data for pretraining, curbs
on the generalizability to test scene classes not seen in the
pretraining, as well as additional costs in fine-tuning for
each scene. In contrast, test-time optimization approaches
only train on the given test scene, while using additional
supervision (e.g., depth) [10, 63, 49] or regularization tech-
niques [33, 19, 41, 26, 52, 9] to generalize for the highly
specific optimization space incurred by sparse information.
However, these approaches are often highly dependent on
external supervision data and models [44, 11, 30] that may
not always be available. Moreover, some models also rely
on intentional inductive biases for object-centric scenes,
thereby limiting the generalizability of models to various
scenes, including multi-object or unbounded scenes.

Novel View Synthesis for Unbounded Scenes. While ini-
tial NeRF [38] models rendered relatively simple scenes
with plain backgrounds or forward-facing scenes with sin-
gle centered objects, they have been extended to larger and
unbounded scenes.With some approaches based on training
decomposed visual components of NeRF [32, 55, 57], oth-
ers focus on reparameterizing the 3D scene unbounded in all
directions by concentrating on nearby content more heavily
than content distant from the camera [65, 40, 2]. As these
models tend to address large scenes (e.g., city-scale or out-
door scenes), they need large-scale input data that densely
cover a scene for high performance view synthesis.

Diffusion Models for Image Generation. A recently pop-
ular stream of research in computer vision is image gen-
eration with diffusion models [51, 47, 50, 25, 23]. Along
with the development of large-scale language models [24,
45, 46, 4] and CLIP models [44], diffusion-based architec-
tures have shown spectacular performances in multimodal
conditional image generation and manipulation tasks, espe-
cially leveraging on the text modality. While these mod-
els have shown impressive results in 2D space and datasets,
they have mostly been constrained to a single camera pa-
rameter and thus have not been able to understand or learn
3D concepts in the given datasets [17]. Attempts to apply
diffusion models to 3D space have also heavily exploited
larger multi-view datasets for pretraining for sparse views
of very simple objects [62, 15, 66, 59], leading to questions
of whether the model truly is a few-view based model and
understands the 3D configurations of a given test scene.

3. Preliminaries

Problem Formulation. The task of novel view synthesis
aims to render a scene from viewpoints previously unob-
served in training. In this paper, we further narrow down
our focus in two ways: 1) the number of available views ns

in the training set is extremely small (e.g., 3 and 6), thus

sparsely covering the scene, and 2) the target scene is un-
bounded, indicating that scene contents may be at any dis-
tance from the camera, which may point at any direction,
as opposed to a single object located at the center. For-
mally, the task takes two inputs: 1) a set X = {x(i) ∈
Rh×w×3 | i = 1, ..., ns} of observed views x(i) ∈ Rh×w×3,
where h and w are the height and width of views, and 2) a
set P = {p(i) ∈ R3×4 | i = 1, ..., ns} of camera pose pa-
rameters p(i) = [r(i) | t(i)] ∈ SE(3) in the 3D Cartesian
space corresponding to each x(i), where r(i) ∈ R3×3 is the
rotation matrix and t(i) ∈ R3×1 is the translation vector.
The output of inference is an image y ∈ Rh×w×3, a view
from an unseen viewpoint or camera pose ptest = [rtest |
ttest] ∈ SE(3) that may have not been included in P .

Diffusion Models. Diffusion probabilistic models [16] are
a family of generative models that aims to learn how to
recover the actual distribution of the given data by revers-
ing the forward diffusion process, where noise is gradually
added to the data. In essence, the model learns a reverse
Markov chain of length T , which can be translated into a
series of T denoising autoencoders [54] for t ∈ {0, ..., T}.
Given a ground truth image x, diffusion models are con-
structed as a framework where a model is first initialized as
random noise zT ∼ N (0, I). Then, zT is iteratively de-
noised under a predefined diffusion schedule. This gradual
learning process continues until the model is able to recon-
struct x, which is the completely denoised original image.
At each intermediate optimization step t ∈ {0, ..., T}, an
intermediate noised image zt can be formulated as

zt =
√
αtx+

√
1− αtϵt, (1)

where 1 = α0 > α1 > · · · > αT−1 > αT = 0 are hyper-
parameters according to the diffusion noise schedule, and
ϵt ∼ N (0, I). At each step, a denoising objective [16]
guides the network fθ, which can be conditioned on an ad-
ditional conditioning input p ∈ Rd:

Ez,p,t,ϵt

[
wt∥fθ(zt, t,p)− ϵt∥22

]
, (2)

where wt is determined by the diffusion schedule. By con-
ditioning the network fθ on p, the diffusion model is able
to learn the latent distribution conditioned on p.

Neural Radiance Fields (NeRF). NeRF [38] captures the
implicit and continuous 3D representations of static objects
or scenes. The mapping from a 3D spatial coordinate q ∈
R3 in the scene and viewing direction d = (θ, ϕ) to its
corresponding volumetric density σ ∈ [0,∞) and emitted
color c = (r, g, b) ∈ [0, 1]3 is encoded into the weights of
an MLP. The color of the pixel C(r) along a camera ray r
is estimated with the weighted sum of the color values of N
sampled points along the ray, weighted by the density and



accumulated transmittance as

Ĉ(r) =

N−1∑
i=0

Ti (1− exp(−σiδi)) ci, Ti = exp

(
−

i−1∑
j=0

σjδj

)
(3)

where δi is the distance between consecutive sampled
points. NeRF is optimized by the L2 loss L =∑

r∈R ∥C(r)− Ĉ(r)∥22 between the estimated colors Ĉ(r)
for a random batch of rays R and their ground truth values.

Mip-NeRF 360 [2]. Vanilla NeRF representations are often
aliased, due to the lack of understanding in multiple scales.
Mip-NeRF [1] improves NeRF to reason about scales by
casting a 3D cone and introducing integrated positional en-
coding (IPE) to represent a volume of conical frustum or
Gaussian region, as opposed to casting a point-wise ray
and using positional encoding that represents an infinitesi-
mal point. Mip-NeRF 360 [2] further extends Mip-NeRF to
cover unbounded scenes with non-linear scene parametriza-
tion, online distillation, and a distortion-based regularizer.
As Mip-NeRF 360 is a more appropriate NeRF representa-
tion for scenes with varying camera parameters and various
objects, we develop our idea based on pose parameters used
in this Mip-NeRF 360 model.

4. The Proposed Method: PoseDiff
We propose a novel method to generate realistic novel

views with a few sparse inputs for a given unbounded scene.
A diffusion model is used to augment the lack of informa-
tion due to large proportions of unseen viewpoints in sparse
view scenarios, and to accelerate computation times. By
conditioning a diffusion model with the corresponding 3D-
aware camera pose parameters and text description for the
few input views, we train a pose-conditioned multimodal
diffusion model that generates realistic views from certain
viewpoints (Section 4.1). Then, we render a plausible set of
views for a set of unseen camera poses, by inferring from
the pose-conditional multimodal diffusion model trained on
the original few sparse seen views (Section 4.2). The overall
architecture is illustrated in Figs. 3 and 4.

4.1. Pose-conditioned Diffusion

The conditional diffusion model focuses on learning the
relationship between 3D camera configurations and the cor-
responding views in a localized latent subspace relevant to
our scene of interest. Thus, we are able to supplement the
lack of information on unseen views in the current training
set. As shown in Fig. 3, this module takes three inputs.

Firstly, a small number ns (e.g., 3, 6) of images X =
{x(i) ∈ Rh×w×3 | i = 1, ..., ns} showing differing views of
a single target scene, where h,w are the height and width
values of the images, are encoded with a Variational Au-
toencoder (VAE) model with KL loss [27] into the mean
and log variance values of a diagonal Gaussian distribution.

We then sample latents of the images from each respective
diagonal Gaussian distribution and apply random noise to
form noised images z(i) (i ∈ {1, ..., ns}). Secondly, a rep-
resentative text prompt tr with a customized token [S*]
(e.g., "zwx") inspired by [13] to describe the scene in X
(e.g., "a zwx room") is converted into a tokenized text
embedding er ∈ Rl×d, where l is the number of tokens in
the text prompt and d is the embedding dimension per token,
with a pre-trained CLIP text encoder [44]. The special token
helps to localize the latent subspace relevant to our specific
test scene among other similar class instances, while lever-
aging prior knowledge of text embedding models. Lastly,
ns pairs of camera poses p(i) = [r(i) | t(i)] ∈ SE(3) for
each x(i) are processed into rays per pixel of each image,
represented as a vector with an origin and direction. The
origin and direction values are concatenated to form a set
P ′ = {γ(p(i)) | i = 1, ..., ns} of camera poses.

The noised images z(i) (i ∈ {1, ..., ns}) and camera
pose parameters γ(p(i)) (i ∈ {1, ..., ns}) are concatenated
to form the input of a conditional 2D UNet. The UNet
and the conditional preprocessed text embeddings er are
used to train a generative latent diffusion model fθ. Along
the progress of the diffusion process with T optimization
steps, each initial noised image z

(i)
T is iteratively refined

via T time steps into z
(i)
t (t ∈ {0, ..., T}) until the ground

truth image z
(i)
0 = x(i) is realized. The diffusion model

is optimized with a L2 reconstruction loss [16] for each
i ∈ {1, ..., ns}, where ϵ ∼ N (0, I):

L(z(i),er,γ(p
(i)),θ)=E

z(i),er,γ(p(i)),t,ϵ

[∥∥fθ(z(i)
t ,er,γ(p

(i)))−ϵ
∥∥2

2

]
.

4.2. Inference of Unseen Views

By using the pose-conditioned multimodal generative
diffusion model fθ trained in Section 4.1, this step aims to
create realistic novel views from previously unseen cam-
era poses. As shown in Fig. 4, the previously trained
fθ is used to infer nu plausible views, where each view
y ∈ Rh×w×3 is inferenced from a camera configuration
ptest = [rtest | ttest] ∈ SE(3) that may have not been in-
cluded in P ′ for the ns given views of the scene. Unlike ns,
which was a small number, nu can be any number selected
by the user. Various tactics can be used to sample previously
unobserved viewpoints. In our experiments, we follow the
random sampling technique used in Mip-NeRF 360 [2] to
select unobserved viewpoints in various trajectories.

As a result of inferring nu unseen views with the diffu-
sion model fθ, trained specifically with our test scene, we
are able to construct a larger dataset of size n = ns+nu that
densely covers the scene. While the nu inferred views for
unseen viewpoints may not be identical to the actual ground
truth, the resulting images will still show plausible views
rather than foggy or floating artifacts, due to the plausible
generation capabilities of diffusion models.



Figure 3. Overview of our pose-conditioned multimodal diffusion model. Given a few sparse views of a scene, respective camera pose
parameters for each view, and a text description per scene, a diffusion model is trained to reconstruct the given views.

Figure 4. Inference of unseen views. Based on the pose-
conditioned multimodal diffusion model trained on seen views, we
inference plausible views from unseen viewpoints.

5. Experiments

5.1. Experimental Settings

Datasets. We verify our method on two datasets: LLFF [37]
for forward-facing scenes and 360 dataset [2] for un-
bounded scenes. The 360 dataset consists of unbounded
scenes with complex objects and a detailed background,
taken from various angles and distances.

Baselines. We perform quantitative and qualitative compar-
isons with various experiment configurations against base-
lines including RegNeRF [41] and Mip-NeRF 360 [2]. We
first compare our results to RegNeRF, a sparse-view model,
with varying numbers of training input, with and with-
out the inductive bias for objects being in the center of
the scene. Next, we compare our method with Mip-NeRF
360, a dense-view model intended for unbounded scenes,
in terms of results from different training epochs and time,
with varying size of input data.

Evaluation Metrics. Our method is evaluated both quanti-
tatively and qualitatively. Quantitatively, we use PSNR and
SSIM [61] metrics to assess the quality of our generated re-
sults against the ground truth views and baseline results. For

# of
Views Model

Training
Epochs

Training
Time

Inference
Time

per Image

3
RegNeRF 69,768 9 hrs 13.84 secs

Mip-NeRF 360 500,000 58 hrs 6.62 secs
Ours 800 6 mins 4 secs

6
RegNeRF 139,535 16 hrs 12.09 secs

Mip-NeRF 360 500,000 58 hrs 6.05 secs
Ours 1000 10 mins 4 secs

Table 1. Computation times of models for each number of input
views used for training. All computation times were measured
when using one A6000 GPU for one experiment configuration.

qualitative evaluation, we demonstrate the degree of resolu-
tion and realism of the synthesized views.

Implementation Details. Our model is built upon the
text-to-image latent diffusion models [58] and Mip-NeRF
360 [39] for extracting the camera pose parameters of each
image. For training the latent diffusion model, we increase
the input channel size of the UNet to 10 to accommodate
the additional camera pose parameters. The images are not
randomly transformed, but rather only converted to tensors
and normalized for better alignment with image-wise cam-
era poses. We set the learning rate to 1e−4 for training our
pose-conditioned diffusion model, with 800 to 1000 train-
ing epochs used for 3 and 6 input views. Additional details
on training and inference can be found in Table 1. We use
a single NVIDIA RTX A6000 GPU for training and infer-
ence. All other hyperparameters related to the latent diffu-
sion model follow the same setting from the original paper.

5.2. Qualitative Evaluations

We demonstrate some novel view synthesis results ob-
tained by our model and baselines for qualitative com-
parison. As shown in Fig. 5, our model is able to per-
form novel view synthesis in both unbounded scenes and
forward-facing scenes. Compared to the state-of-the-art
few-view based model (RegNeRF), our model is able to ren-



Figure 5. Comparison with sparse-view based NeRF model results. Our model is able to render plausible novel views for all scene types
tested with a few input views. While RegNeRF failed to render unbounded scenes or without inductive bias injection in general, it showed
better renderings with forward-facing scenes, albeit with blurry geometric details.

der plausible novel views of the unbounded scenes, while
RegNeRF fails to render a tangible scene in all experiment
scenarios tested for unbounded scenes. On the other hand,
RegNeRF manages to create much concrete views for sim-
pler forward-facing scenes. However, although RegNeRF
catches the colors of the scene better, it fails to capture the
high-frequency details of the scene, such as the leaves sur-
rounding the flowers. This observation is aggravated when
it comes to objects in the periphery of the scene. While
scene content towards the center of the scene are well man-
aged by RegNeRF with more input views, it is unable to per-
form at the same level when the intentional inductive bias
to enforce object centeredness is removed. On the contrary,
our model is able to clearly capture the geometric details
of the scene even without any inductive biases injected in
the training process. Unlike most NeRF-based models, our
model does not render any floating or unnatural artifacts in
the output images. A downside of our model is the slightly
inaccurate color and texture observed in some of the output.

Fig. 6 compares the results on unbounded scenes from
our model and Mip-NeRF 360, a model for unbounded
scenes based on dense views, at various training steps.
When fully trained on extremely sparse inputs, our model
is able to render relatively realistic novel views of the given
test scene, while Mip-NeRF 360 fails to converge on a
clear image that preserves the geometric structures of the

scene. Whereas Mip-NeRF 360 struggles to capture the
high-frequency details of the scene overall, our model finds
difficulty in precisely capturing the colors, for some of the
scenes where geometric details are maintained well.

It is noteworthy, however, that Mip-NeRF 360 needs
drastically longer training times than ours. With compar-
atively much shorter training times, our model is able to
achieve superior visual performances, compared to the con-
ventional NeRF-based model, even with just 3 views. As
shown in Fig. 6, even after 2 hours (25,000 epochs) of train-
ing, Mip-NeRF 360 is still unable to render high-definition
images for all input views and experiment configurations
tested. On the other hand, our model renders much clearer
scenes only after 6 minutes of training on 3 views.

5.3. Quantitative Evaluations

Tables 3 and 4 compare the scores of PSNR and
SSIM [61] of baselines and our model for few-input scenar-
ios on both unbounded scenes and simpler forward-facing
scenes. We evaluate renderings from models trained on 3
and 6 input images, which are significantly less than the
usual number of images used to train dense-view models, as
shown in Table 2. Throughout most experiments, our model
greatly outperforms baselines in terms of PSNR scores,
proving the high quality of our renderings compared to the
baselines as shown in Figs. 5 and 6. However, our models



Figure 6. Comparison of results with dense-view based NeRF model designed for unbounded scenes. Our model shows plausible
renderings that capture high-frequency details from a few sparse input views, at a much shorter training time compared to Mip-NeRF 360.

Dataset Scene Train Set Test Set Total

360 Dataset
(Unbounded

Scenes)

Bicycle 170 24 194
Garden 162 23 185
Kitchen 245 34 279

LLFF
(Forward-facing

Scenes)

Room 36 5 41
Flower 30 4 34
T-rex 49 6 55

Table 2. Common dataset sizes used in dense coverage mod-
els. By default, most models typically take every 8th image in the
whole dataset as a test image.

do not particularly excel in SSIM scores. As SSIM consid-
ers contrast in images as a major part of the metric, it seems
to weigh down on the difference in color that our rendered
images show in contrast to the ground truth images.

Moreover, we compare the training and inference costs
of the baselines and our model in Table 1. With the same
computational resources, our model takes several orders of
magnitude less in time for training, and only takes around
2/3 or 1/4 of the time for inference, compared to baselines.

5.4. Ablation Studies

Specialized Text Tokens. In this section, we demonstrate
the benefits of using a specialized text token as opposed
to text tokens consisting of pure ordinary natural language
words. Fig. 7 shows images generated from text-driven la-
tent diffusion models. When simply given a general noun to
describe the object or scene (e.g. "trex"), the generated
images show a wide variability in the resulting content of
the scene. On the other hand, when we use a randomly gen-
erated special text token [T*] (e.g., "zwx") to describe
the instance scene of interest, the generated results are con-
sistent with the test scene image used for generation.

This difference in image generation capability may be
interpreted as the difference in the latent spaces that the dif-
fusion model lives on when making generations. As shown
in Fig. 8, our diffusion model is guided specifically towards

Figure 7. Effect of using a specialized text token. A particular
descriptive text token (e.g., "zwx") to describe our instance can
be used to overfit to our scene of interest and only generate scenes
similar to the input image.

the green latent space relevant to a particular instance, noted
with a special token [T*] as "A [T*] trex". This
would make the learning take place on or near the latent
space specifically related to our particular instance trex.
This allows the model to understand relevant semantic em-
beddings that do not lie far from the given instance. In con-
trast, general diffusion models [23] generate a fine-tuned
model for a general class of instances (e.g., "A trex")
and make inferences in that larger and more general latent
space, such as the yellow space in Fig. 8. Thus, the gen-
erated results may not necessarily be related to the specific
source instance scene we wish to generate, as long as they
are relevant to any instance from the ‘trex’ class.

Pose-conditioning. Fig. 9 shows the effect of utilizing
pose to condition the text-to-image latent diffusion models.
When only given the text conditioning with the specialized
text tokens (above 2 rows), the model only generates images
that are seen from a relatively uniform camera direction or
pose. However, when pose is additionally used to condition
the diffusion model as done in our model (bottom row), the
model generates novel views that consider the various view-
points, from which the scene can be viewed. The rendered



Dataset Scene

RegNeRF Ours

3 views 6 views No inductive bias
(3 views) 3 views

PSNR(↑) SSIM(↑) PSNR(↑) SSIM(↑) PSNR(↑) SSIM(↑) PSNR(↑) SSIM(↑)

360 Dataset
Bicycle 6.84 0.306 12.62 0.396 6.96 0.309 27.88 0.258
Garden 8.47 0.376 12.76 0.429 8.16 0.352 28.04 0.206

LLFF
Flower 19.72 0.677 23.81 0.849 15.26 0.440 27.96 0.410
Room 21.04 0.860 29.21 0.951 15.52 0.630 28.81 0.695

Table 3. Comparison with RegNeRF results. The top PSNR score for each experiment configuration is emphasized in bold.

Dataset Scene
Mip-NeRF 360 Ours

3 views 6 views 3 views
PSNR SSIM PSNR SSIM PSNR SSIM

360
Dataset

Bicycle 13.40 0.134 14.58 0.182 27.88 0.258
Garden 17.88 0.374 17.87 0.378 28.04 0.206

Table 4. Comparison with Mip-NeRF 360 results on un-
bounded scenes. Top scores for PSNR are emphasized in bold.

Figure 8. A diagram of the latent training in diffusion models.
Shown in a rough diagram, our model learns a targeted latent space
(green) particular for the instance scene, while general latent dif-
fusion models [23] often live on a larger and more general latent
space (yellow) for the class that the instance scene belongs to.

images are also much more realistic, without any strange
objects (e.g., an object that is a fusion of a bench and a bi-
cycle, a bicycle in a bench, or half a bicycle) as in the text-
to-image diffusion models conditioned only on text. Thus,
we conclude that using camera pose to condition a diffusion
model does help the model to understand and reason about
3D-aware camera viewpoints.

6. Limitations & Future Work
Although our model has achieved to render realistic

scenes with high-frequency details by using significantly
less training costs, renderings from our model sometimes
show inaccurate and rather artistic results. This seems to be
due to our leveraging of the generative powers inherent in
diffusion models. Moreover, our model requires a careful
design of hyperparameters for each experiment condition.
We leave methods for color and appearance regularization
and potentially learnable methods to determine the neces-
sary hyperparameters for scalable experimentation settings
as promising future work.

Figure 9. Effect of pose-conditioning. By using pose as an ad-
ditional condition, our diffusion model is able to generate novel
views from various camera pose configurations.

7. Conclusion

We have presented PoseDiff, a method to generate novel
views for unbounded scenes with a few sparse inputs. In
order to supplement the sparse information from few input
images in sparse view scenarios and the long computation
times of conventional methods for novel view synthesis, we
utilize latent diffusion models conditioned on pose param-
eters from NeRF and text descriptions. In this process, the
proposed model was able to show synergy between the fast
computations and generative capabilities of diffusion mod-
els and the ability of pose parameters from NeRF to main-
tain global view-consistency. As a result, we were able to
synthesize novel viewpoints of a scene that preserve high-
frequency geometric details with computation times that
were several orders of magnitude less than baselines. We
identify methods for color contrast improvement and learn-
able hyperparameter tuning for scalability as potential fu-
ture research directions.
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