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Abstract

Zero-shot learning offers an efficient solution for a ma-
chine learning model to treat unseen categories, avoid-
ing exhaustive data collection. Zero-shot Sketch-based
Image Retrieval (ZS-SBIR) simulates real-world scenarios
where it is hard and costly to collect paired sketch-photo
samples. We propose a novel framework that indirectly
aligns sketches and photos by contrasting them through
texts, removing the necessity of access to sketch-photo pairs.
With an explicit modality encoding learned from data, our
approach disentangles modality-agnostic semantics from
modality-specific information, bridging the modality gap
and enabling effective cross-modal content retrieval within
a joint latent space. From comprehensive experiments, we
verify the efficacy of the proposed model on ZS-SBIR, and it
can be also applied to generalized and fine-grained settings.

1. Introduction
Sketch-based image retrieval (SBIR) is a cross-view re-

trieval task, retrieving relevant natural images given an ab-
stract and ambiguous sketch of an object. Typically, a ma-
chine learning model is trained to map a photo and its cor-
responding sketch closely in a common latent space, trained
on a set of paired samples.

However, it is usually challenging and often infeasible
to acquire paired samples of free-hand sketches and natural
photos across all potential objects. For this reason, SBIR
task has naturally adopted zero-shot learning, which has
emerged to classify samples belonging to categories never
seen at training. In Zero-Shot Sketch-based Image Retrieval
(ZS-SBIR) [31], a model is trained on some collection of
paired sketch-photo samples, and at testing time, it is asked
to retrieve photos with an object unknown at training given
its sketch.

Under this zero-shot setting, prior works have studied
semantic transfer by utilizing external semantic knowledge,
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such as label embeddings or hierarchical graphs [19, 7, 45,
25, 2, 3, 9]. They provide insights for strategic handling of
zero-shot scenarios in the presence of external supplemen-
tary information. Recently, CLIP-AT [26] proposes em-
ploying comprehensive visual and textual embeddings from
CLIP [24], trained on large-scale vision-language data.
Transferring the rich visual-linguistic relationship learned
from the large data, this approach significantly improves the
retrieval performance.

However, adapting off-the-shelf multimodal models
such as CLIP [24] to the ZS-SBIR task is non-trivial.
Modality gap [14, 32] is a known phenomenon that im-
age and text embeddings in a common space still tend to
be clearly separated, even though the model is trained to
embed images and texts based on their semantics, not based
on their modalities. Ideally, we would like to learn to map
instances based on both their semantics and forms (modal-
ities), where these two are disentangled. Then, a simple
nearest neighbor search within the target modality space
would retrieve relevant items regardless of their forms.

To bridge the modality gap and fully utilize a multimodal
foundation model, we propose Modality-Aware encoders
for Sketch-based Image Retrieval (MA-SBIR), which ex-
plicitly and separately learn both modality-agnostic seman-
tics and modality-specific information. At a high level, our
model is trained to transform a modality space into an-
other within a shared latent space, by explicitly learning
modality-specific nuance, separated from semantics.

A key advantage of this design is that the model can
be trained without paired sketch-photo examples; it can be
trained on a set of sketches and another set of photos la-
beled with a common vocabulary, without necessarily hav-
ing one-to-one relationships. Instead of directly learning to
locate photos and sketches, we adopt an indirect approach
through the category annotation (with their names as text
modality). Our model consumes an image (either a sketch
or a photo) and its associated text at a time, and their seman-
tic embeddings are aligned as previous models like CLIP. At
the same time, the model learns to distinguish sketches and
photos with a separate modality encoding. In this way, the



model learns to represent semantics and modality, image by
image, without requiring sketch-photo pairs.

By design, we believe our indirect alignment is more ef-
fective than the conventional direct alignment for the cate-
gorical SBIR, where a photo is considered correct if it is in
the same category with the queried sketch (e.g., correct if
both belong to clothes, regardless of their specific type or
color). In addition to this, we apply our proposed approach
on two other relevant settings as well. First, we test on the
Generalized Zero-shot SBIR (GZS-SBIR) [45, 3, 9, 25, 15],
which is a more realistic setting that the test set contains
both seen and unseen classes. This is to better simulate
a real situation where performance on both is vital due
to greater prevalence of seen classes. Second, we test on
a fine-grained (or instance-wise) SBIR setting (FG-SBIR),
where only the one-to-one mapped photo is considered cor-
rect for each query sketch. As our model is not designed
to directly learn sketch-photo alignment, we expect sub-
optimal performance on this setting. For this reason, we
adapt our model with a few modifications (Sec. 3.3).

We summarize our contributions as follows:

1. We propose a novel method to align a joint embedding
space, disentangling semantics from modality-specific
information.

2. Our proposed model indirectly aligns sketches and
photos, removing the necessity of paired sketch-photo
examples for training.

3. We verify that our proposed method achieves the state-
of-the-art performance on diverse zero-shot sketch-
based image retrieval tasks.

2. Related Work
Sketch-based Image Retrieval (SBIR) can be categorized

into two based on retrieval granularity: Category-level and
Instance-level (fine-grained SBIR). Category-level SBIR is
to retrieve photos of an object in the same category among
the candidate images covering multiple categories, based
on a given sketch. For instance, given an image of a cat,
category-level SBIR considers images of any kind of cats
correct. In instance-level SBIR, on the other hand, a sketch
query should yield an exactly matching instance from im-
ages, not just those belonging to the same category. In the
above example, the images with the same cat instance are
considered correctly retrieved.
Category-level SBIR. Recent SBIR works have focused on
aligning the shared embedding space of sketches and im-
ages by employing triplet ranking methods [42, 16, 4, 13],
re-ranking scenarios [11, 39], or efficient hashing opti-
mization [17, 44, 20] for this. Furthermore, some ap-
proaches [44, 10] align the distributions of images and
sketches to train a generative model, forcing sketch and im-
age representations to preserve their shared semantics.

The zero-shot framework, pioneered by [31], is designed
to facilitate the retrieval of categories that are unseen at
training. ZS-SBIR often utilizes auxiliary information as
a means of guiding previously unseen images into a com-
mon semantic space, e.g., from predefined class labels [19],
hierarchical graphs [7, 45, 25, 2, 3], and textual embed-
dings from a vision-language joint common space [26]. Ad-
versarial training [45, 7, 2] also has been employed. [3]
aligns features from the intermediate and concluding layers
of dual backbones, and [12] employs cross-domain mix-up
strategies. In order to disentangle domain and semantic fea-
tures, gradient reversal layers [5] and separate modeling for
each encoding [35]. Modern research has tackled catas-
trophic forgetting at fine-tuning to preserve the accumu-
lated knowledge from the pre-training via knowledge dis-
tillation [19, 38, 36], backbone sharing [37], prompt learn-
ing [26], and test-time adaptation [28].

However, zero-shot models often overfits towards un-
known categories. To address this, a more realistic Gen-
eralized Zero-Shot Sketch-Based Image Retrieval (GZS-
SBIR) [7] setting is proposed, mixing seen and unseen
classes in the test set. A few recent works [45, 3, 9, 25, 15]
have explored this direction.

Instance-level SBIR. Unlike the categorical SBIR, fine-
grained (FG) SBIR aims to retrieve the exact target item
at the instance level given a sketch image. FG-SBIR mod-
els focus on enhancing pixel representations by incorpo-
rating spatial modules to account for detailed spatial po-
sitions [33], cross-interaction modules to calculate patch-
level similarities [34, 15], and utilizing randomized patch
shuffling techniques [22, 26].

Aligned with the zero-shot setting in SBIR, fine-grained
task is also tackled in zero-shot settings [21]. Recent stud-
ies address cross-category generalization by leveraging the
well-aligned CLIP [24] space [26], introducing cross-modal
attention and patch-level matching [15], and knowledge dis-
tillation from additional unlabelled photos [27].

3. Method
3.1. Problem Formulation

Let X be a paired set of n samples of a sketch and its
corresponding real photo, where each pair is annotated with
a class. The i-th sample is denoted by (S(i),P(i), c(i)) ∈ X ,
where S(i) ∈ RM×N×3 is a sketch image of size M × N ,
P(i) ∈ RM ′×N ′×3 is its corresponding ground truth photo
of size M ′×N ′. (S and P may have different size.) c(i) ∈ C
is the ground truth category of the pair, where C is a set of
all categories. Each category c ∈ C is transformed into a
textual caption, formatted as ‘a photo of a c’, denoted by
T ∈ |V|L, where V is the vocabulary set and L is the maxi-
mum length of the sentence.

On zero-shot tasks, C is further split to the seen classes



(Cs) and unseen classes (Cu), used for training and testing,
respectively, where Cs ∩ Cu = ∅ and C = Cs ∪ Cu. The
sketches and photos are split into train and test sets accord-
ing to their labels; that is, Xtrain = {(S(i),P(i), T (i)) | c(i) ∈
Cs}, Xtest = {(S(i),P(i)) | c(i) ∈ Cu}.

In Sketch-based Image Retrieval (SBIR) task, a query
sketch image S is given, and the model aims to re-
trieve relevant images from the candidate photos, either
within the same category (category-level) or the exactly
matched image instance (instance-level or fine-grained).
For category-level SBIR, the photos are considered rele-
vant with any sketch within the same category; that is,
Xc = {(S(i),P(j)) | c(i) = c(j) = c} is a set of correct
pairs for a class c ∈ C. In fine-graind SBIR, there always
exists exactly one matched photo for each sketch; that is,
Xi = {(S(i),P(i))} for a sample datum i. For Generalized
ZS-SBIR, randomly sub-sampled examples from Xtrain are
added to Xtest, where Xtrain remains unchanged.

3.2. The Proposed Model

Overview. The overall workflow of our approach for the
category-level SBIR is illustrated in Fig. 1. The first step
comprises of modality-specific encoding of an input image,
either a sketch S or a photo P (using the image encoder
Eimg) and caption T (using the text encoder Etxt), and fur-
ther alignment within a batch using CLIP loss, Lclip. In
the second step, a learnable modality embedding vector is
subtracted from the CLIP image (zimg) and text (ztxt) em-
beddings, to leave only their semantics, denoted by simg
and stxt, respectively. We apply another semantic alignment
loss, Lsem, between them. Lastly, the modality encoding is
added back to the opposite modality, producing converted
text (z′txt) and image (z′img) embeddings. They are trained
to reconstruct the original embedding (Lrec) and to classify
the target modality correctly (Lmc). This assists the model
to disentangle common semantics from modality-specific
information, eventually helping to transform one domain
(e.g., sketch) to another (e.g., photo). Once trained, the
original and transformed embeddings are within the same
embedding space, applicable for retrieval tasks.
Inputs. The network receives a single image, either a sketch
S or a photo P, with a caption (T ) as input. Adopting the
Vision Transformer [6], the input image is divided into mul-
tiple P × P patches ∈ Rnpatch×(P 2·3), where npatch is the
resulting number of patches. Each image patch is then lin-
early projected to a dimg-dimensional space. Similarly, the
caption is tokenized and vectorized, resulting in a sequence
with nseq token embeddings of size dtxt. An additional
[CLS] token embedding is prepended to each sequence.
We denote the input image sequence by x ∈ R(npatch+1)×dimg

and the text sequence by y ∈ R(nseq+1)×dtxt .
Indirect Alignment of Sketches and Photos. We use pre-
trained CLIP [24] image (Eimg) and text encoders (Etxt),

taking x and y as inputs, respectively. From the out-
put sequences, Eimg(x) ∈ R(npatch+1)×dimg and Etxt(y) ∈
R(nseq+1)×dtxt , we take the representations corresponding to
[CLS], and linearly map them to a common embedding
size d. We denote the resulting embeddings by zimg ∈ Rd

and ztxt ∈ Rd, respectively, and they are our base image and
text representations.

Given zimg and ztxt, we further align the embeddings by
minimizing the following loss:

Lclip =
1

2
(CLIP(zimg, ztxt) + CLIP(ztxt, zimg)) , (1)

where CLIP(a,b) = − log
exp (a · b/τ)∑B

j=1 exp (a · bj/τ)
. (2)

Our approach is distinguished from existing methods in
that ours does not have a direct mechanism to align sketches
and photos within the image modality, while the subtle dif-
ferences between them are indirectly aligned through texts.
This approach is opposed to the direct alignment via triplet
learning in existing works [42, 16, 4, 13]. The biggest
advantage of our approach over the previous direct triplet
learning is that ours does not require paired training ex-
amples of sketches and photos, which are costly to collect.
In order to directly train the model to distinguish the two,
previous models have relied on positive pairs of a sketch
and a photo. With our indirect approach, however, no ex-
plicit positive relationship between a sketch and a photo is
utilized. Instead, both sketches and photos are embedded
via a common image encoder and aligned with the asso-
ciated text, taking advantage of the intricate representation
capacity of the CLIP. This capability of leveraging unpaired
datasets addresses the well-known issue of data scarcity in
the community, aligning with the efforts of [1, 27] to tackle
limited data availability. Our design also simplifies the con-
trastive loss term, removing the need for negative sampling.

Modality Encoding. Since our model uses a common vi-
sual encoder for sketches and photos, we need an addi-
tional mechanism to distinguish them. For this, we intro-
duce modality encoder Emod, composed of learnable en-
coding (m ∈ Rd) for each modality. Specifically, we as-
sign a unique index to each specific modality; for example,
sketches, photos, and texts are assigned with 0, 1, and 2, re-
spectively. Under our design, the model learns to represent
the modality itself, regardless of its nature, in its modality
encoding m.

Under this setting, our model is trained to separate its
latent space into its constituent semantic and modality com-
ponents. Once this is achieved, one can convert an embed-
ding from one domain to another simply by

xtrg = xsrc −msrc +mtrg, (3)



Figure 1. Overview of our Architecture. Given an image x (either a sketch or a photo) and a text y, modality-specific encoders (Eimg

and Etxt) embed them to zimg and ztxt, respectively, where each z is a sum of semantic embedding s and modality encoding m. We acquire
semantic-only vectors (simg, stxt) from them by subtracting the modality encoding (mimg, mtxt). By adding the opposite modality encoding
to the semantic embeddings, we reconstruct the image and text embeddings (z′img and z′txt).

where x ∈ Rd are the learned embedding (containing both
semantics and modality), m ∈ Rd are the modality encod-
ings corresponding to each dataset, either source (src) and
target (trg). We expect the converted representation in this
way to yield improved performance on the retrieval tasks.
Visual-Text Alignment. From the CLIP embeddings,
zimg ∈ Rd and ztxt ∈ Rd, we subtract their modality en-
codings, mimg ∈ Rd and mtxt ∈ Rd, respectively. We get
image and text embeddings purely based on their semantics:

simg = N(zimg −mimg), stxt = N(ztxt −mtxt), (4)

where N(x) = x/∥x∥2, indicating the normalization op-
erator. For a positive paired example of an image and its
associated text, we train the model to keep their semantic
representations similar. Specifically, we consider the nor-
malized average of image and text embeddings as its general
semantic representations, denoted by z, and both semantic
representations are encouraged to be close to it. Formally,
we minimize the following semantic loss Lsem:

Lsem = − cos (simg, z)− cos (stxt, z) , (5)

where z = N((zimg +ztxt)/2). We use cosine similarity, but
other similarity or distance functions may be applicable.
Cross-modal Reconstruction. On the purely semantic rep-
resentations, simg and stxt, we add the modality encoding
from the opposite modality, producing reconstructed text
and image embeddings, denoted by z′txt and z′img:

z′txt = N(simg +mtxt), z
′
img = N(stxt +mimg). (6)

We apply the following loss to ensure the reconstructed em-
bedding maintain similar directions to the original:

Lrec = − cos (z′txt, ztxt)− cos
(
z′img, zimg

)
. (7)

In addition, to reconstruct more precisely, we introduce
a modality classifier on the reconstructed embeddings, z′img
and z′txt. For each, we minimize a CE loss Lmc defined as

Lmc =

C∑
j=1

mj log(m̂j), (8)

where m̂j ∈ RC is the predicted logits for the input em-
bedding to belong to each modality, mj is the one-hot en-
coding of its ground-truth modality, and C is the number
of modalities. By minimizing the classification loss, we en-
sure that the reconstructed z′{txt,img} originate from separate
classes recognizable by the classifier, irrespective of their
initial modality. This approach helps emphasize the distinc-
tions between different modalities.
Orthogonal Regularization. While the previously intro-
duced losses ensure the disentanglement of semantic and
modality information, this can be enhanced by imposing or-
thogonality between two directions. Specifically, we design
the orthogonality regularizer Lortho as follows:

Lortho =
1

C

C∑
j=1

|z ·mj |, (9)

where mj is the j’th modality embedding, and z =
N(zimg+ztxt/2). This leads to the alignment of the dot prod-
ucts between all vectors in semantic matrix Es and modality
matrix Em towards zero, consequently enforcing orthog-
onality. While a dot product of zero indicates either per-
pendicularity between non-zero vectors or one of the vec-
tors being zero, we preemptively prevent the latter through
other previously mentioned loss terms. For instance, the



Figure 2. Overview of FG-SBIR model architecture. Unlike
for categorical SBIR, fine-grained version takes paired sketches
and photos as input to obtain latent vectors (z{ph,sk}), followed by
step 2 and 3 described in Fig. 1.

uniqueness of modality vectors is ensured by minimizing
Lmc, and semantic vectors resist convergence to zero due to
the preservation of uniformity and alignment in the latent
space, via Lclip, as observed in [40].

Overall Training Objective. Our model is trained to mini-
mize the following:

L = Lclip + λsemLsem + λmcLmc + λrecLrec + λorthoLortho,

where all λs are hyperparameters to control relative impor-
tance between each loss. See Sec. 3.4 for more details.

3.3. Extension to Instance-level SBIR

Fine-grained SBIR (FG-SBIR) task aims to retrieve pre-
cisely matched photos from a sketch query. Unlike the
category-level SBIR, merely retrieving images in the same
category is insufficient. Intuitively, our proposed approach
in Sec. 3.2 is not suitable for this task, as it mainly re-
lies on the indirect connection between sketches and photos
through coarse-grained textual descriptions, without direct
enforcement based on paired examples. For this reason, our
vanilla model is not suitable for finer-grained alignment.

However, we pose a question: can our model still per-
form well, if it is trained on the paired data? To answer this
question, we adapt our model to the instance-level SBIR
setting with some modifications guided by the inherent na-
ture of the task. Specifically, we take a photo-sketch-text
triplet as input, instead of an image-text pair, although we
still use a common image encoder. It is inevitable in this
fine-grained setting to take paired photo-sketch examples.
Some loss functions are also modified, explained in detail
subsequently. However, there is no major change to the
model architecture, other than the straightforward extension
to use three encoders depicted in Fig. 2.

Inputs and CLIP Loss. To learn more sophisticated se-
mantic distribution in the sketch and photograph modalities,
a training example is composed of a triplet (S,P, T ), where
S, P, and T indicate a sketch, its corresponding photo, and
their textual caption, respectively. Each of these three is
considered a distinguished modality, assigned with its own
modality index. Subsequently, we extract modality-specific
features: zsk = Eimg(S) ∈ Rd, zph = Eimg(P) ∈ Rd, and
ztxt = Etxt(T ) ∈ Rd, respectively, where E{img,txt} are pre-
trained modality-specific encoders.

The biggest change for fine-grained model is introduc-
tion of direct sketch-photo alignment. Specifically, we add
another contrastive loss designed for sketch-photo align-
ment, defined as follows:

Lclip-img =
1

2
(CLIP(zsk, zph) + CLIP(zph, zsk)) , (10)

where CLIP(a,b) is defined in Eq. (2).We balance this di-
rect alignment with the existing text-guided indirect align-
ment from Eq. (1) by convex combination:

Lclip = λclip-imgLclip-img + (1− λclip-img)Lclip-txt, (11)

where Lclip-txt is equivalent as Eq. (1) but we use different
notation to ensure that notation Lclip continues to represent
the overall contrastive loss. With a hyperparameter λclip-img,
we adjust the relative influence from the two types of con-
trastive losses.
Additional Regularizations. Beyond comprehending the
semantics of images, grasping the structural aspects, such
as the position of an instance or edge detection within the
image, is another crucial dimension in FG-SBIR. To effec-
tively handle geometric attributes, we adopt patch shuffling,
aligning with prior studies [34, 15, 22, 26] with similar ob-
jectives. Initially, non-overlapping patches from the sketch
and the photo are randomly shuffled using a permutation
function π, and then fed into the image encoder Eimg. We
take the representation corresponding to the [CLS] token
as the sketch and photo embedding, denoted by zsk and zph,
respectively. We additionally minimize the following patch
shuffling loss, allowing push-and-pull between these two:

Lps =
1

2
(CLIP(zsk, zph) + CLIP(zph, zsk)) . (12)

Overall Training Objective. With λs as hyperparameters,
the overall loss is given by

L = Lclip + λpsLps + λsemLsem (13)
+ λmcLmc + λrecLrec + λorthoLortho.

3.4. Implementation Details

We set d to 512 and 768 for ZS-SBIR and FG-ZS-SBIR,
respectively. We use pretrained CLIP [24] and ViT (ViT-
B/32 for categorical and ViT-B/16 for fine-grained) as back-
bone. For FG-ZS-SBIR, zimg ∈ R768 is extracted from the



Eimg without the last projection layer. The text embedding
is projected to the same size by a projection layer. Also, we
strategically freeze the text encoder during training to en-
hance efficiency, supported by our findings that this main-
tains performance unaffected for FG-ZS-SBIR. Modality
classifier is implemented with a FC layer.

We use AdamW optimizer with early stopping. The
learning rate for the image/text encoder is set deliberately
lower than the rest, to prevent catastrophic forgetting: (5e-
8, 5e-3) for ZS-SBIR, and (5e-5, 1e-2) for FG-ZS-SBIR.
We use batch size of 256 on Sketch-Ext and TU-Berlin-Ext
for ZS-SBIR, while 64 on QuickDraw-Ext for ZS-SBIR and
on Sketchy for FG-ZS-SBIR. We grid search the weight co-
efficients λ{sem, mc, rec, ortho} and set to (0.1, 0.1, 0.02, 0) for
Sketchy-Ext, (0.1, 0.1, 0, 0) for TU-Berlin-Ext, and (0.2,
0.2, 0.2, 0.2) for QuickDraw-Ext. For FG-ZS-SBIR, we use
(0.5, 0.1, 0.02, 0.1, 0.02) for λ{ps, sem, mc, rec, ortho}. We report
mean performance of three independent experiments. We
implement our model with PyTorch [23] and experiment on
a NVIDIA RTX A6000 GPU.

4. Experimental Settings

Datasets. We evaluate our method on well-known ZS-
SBIR datasets: Sketchy Extended, TU-Berlin Extended and
QuickDraw Extended. Sketchy Extended [18] consists of
73,002 images on 125 categories, on average 604 sketches
and 584 images per class, extending Sketchy [29]. For zero-
shot experiments, we set aside 21 classes that are not present
in the 1,000 classes of ImageNet for testing, leaving the rest
104 classes for training, following [41].

TU-Berlin Extended [18] extends the TU-Berlin [8],
originally designed for sketch classification and composed
of 20,000 sketches on 250 object categories in a balanced
manner, by incorporating 204,489 natural images from [43].
After this extension, each category has 787 images on av-
erage, but highly imbalanced. We follow the partition pro-
tocol in [31], where 30 classes are randomly selected for
testing, leaving the rest 220 classes for training. Due to the
significant imbalances in the numbers of real images in each
class, [31] also made sure that each test category has at least
400 images when choosing the test set.

QuickDraw Extended [5] is a large-scale dataset de-
signed for ZS-SBIR. Using Google Quick, Draw! data, it
contains 110 categories with 330,000 sketches, including
3,000 amateur sketches per category. It also has 204,000
images taken from Flickr tagged with the corresponding la-
bel. For split, we follow [41, 5] to ensure the 30 test classes
free from ImageNet, using the rest 80 classes for training.

Baselines. We compare our method with state-of-the-art
methods for ZS-SBIR and FG-ZS-SBIR. For ZS-SBIR,
we compare with CNN-based models (SEM-PCYC [7],
SAKE [19], OCEAN [45], BDA [3], and Sketch-3T [28])

Table 1. Comparison for Categorical ZS-SBIR

Model Sketchy-Ext TU-Berlin-Ext QuickDraw-Ext
m@200 P@200 m@all P@100 m@all P@200

CNN

SEM-PCYC [7] - - 29.7 42.6 - -
SAKE [19] 49.7 59.8 47.5 59.9 - -
OCEAN [45] - - 33.3 46.7 - -
BDA [3] 45.8 55.6 37.4 50.4 15.4 35.5
Sketch-3T [28] - 62.4 50.7 - - -

ViT

TVT [35] 53.1 61.8 48.4 66.2 14.9 29.3
PSKD [38] 56.0 64.5 50.2 66.2 15.0 29.8
SaA [25] 53.5 63.0 49.0 60.8 14.8 -
ZSE[Ret] [15] 50.4 60.2 56.9 63.7 14.2 20.2
ZSE[RN] [15] 52.5 62.4 54.2 65.7 14.5 21.6
CLIP-AT∗ [26] 63.6 71.0 65.9 76.7 29.3 36.4
Ours [clip] 68.5 74.9 70.5 77.6 32.2 41.9
Ours [original] 68.5 74.9 70.7 77.6 31.7 41.6
Ours [converted] 69.1 75.5 70.5 77.7 32.7 42.5

*Indicates our reproduction, using codes provided by [35].

and ViT-based models (TVT [35], PSKD [38], SaA [25],
ZSE [15], and CLIP-AT[26]). For generalized ZS-SBIR,
we additional compare with STL[9].

Our Model Variants. We present three variations of our
proposed approach. Initially, we train our model solely with
Lclip to assess the impact of indirect alignment technique,
labeled with [clip]. On our full model, we may use the
original embeddings z{img, txt}, marked with [original], or
the converted ones z′{img, txt}, labeled with [converted].
Evaluations Metrics. We use two standard retrieval met-
rics: mean Average Precision (mAP@k) and Precision
(Prec@k). mAP calculates average precision at different re-
call levels, while precision measures relevance from the top
k retrieved items. k is set following the standard in litera-
ture: k = 200 on Sketchy-Ext [18], k = 100 on TU-Berlin-
Ext [18] only for Precision, and k = 200 on QuickDraw-
Ext [5] only for Precision. For FG-SBIR, we report accu-
racy@{1, 10}, the ratio of sketches correctly matching with
top-k retrieved photographs, following previous studies.

5. Results and Discussion

5.1. Performance Analysis

Categorical ZS-SBIR. Table 1 compares our approaches
with SOTA methods in ZS-SBIR across diverse datasets.
The results indicate that the methods with CLIP (CLIP-
AT [26] and ours) demonstrate superior performance, prov-
ing the effect of leveraging rich semantic information for
enhancing zero-shot retrieval. Moreover, ours[clip] outper-
form all other methods, highlighting the efficacy of our pro-
posed indirect alignment. Notably, we observe a consistent
improvement in mAP across all methods by a minimum of
8% for Sketchy, 7% for TU-Berlin, and 12% for Quick-
Draw, proving our approach is more suitable than earlier
triplet methods that directly correlate sketches and photos.

We also observe that our [original] and [converted] sur-
pass [clip] version, indicating efficacy of the additional loss



Table 2. Comparison for Generalized ZS-SBIR
Model Sketchy-Ext TU-Berlin-Ext

mAP@200 Prec@200 mAP@all Prec@100
SEM-PCYC [7] - - 19.2 29.8
OCEAN [45] - - 31.2 34.1
BDA [3] 22.6 33.7 25.1 35.7
SaA [25] - - 29.0 38.1
ZSE[Ret] [15] - - 46.4 48.5
ZSE[RN] [15] - - 43.2 46.0
STL [9] 63.4 53.8 40.2 49.8
CLIP-AT∗ 55.6 62.7 60.9 63.8
Ours [converted] 62.3 68.5 62.6 67.8

Table 3. Comparison on the FG-ZS-SBIR task
Model Acc@1 Acc@5
CrossGrad [30] 13.40 34.90
CC-DG [21] 22.60 49.00
SketchPVT [27] 30.24 51.65
CLIP-AT [26] 28.68 62.34
Ours [original] 29.96 58.53
Ours [converted] 29.80 57.94

terms. Furthermore, [converted] surpassing [original] im-
plies our methods effectively address the modality gap.
Generalized ZS-SBIR. In Table 2, we observe that our
method consistently outperforms baselines on the General-
ized ZS-SBIR. Results highlight again the validity of em-
ploying CLIP, evident when comparing the CLIP-AT [26]
and ours with all other methods (excluding mAP@200
on Sketchy-Ext, where STL [9] performs the best). Our
method outperforms the previous state-of-the-art models by
12% and 3% in mAP, and by 9% and 6% in precision on
Sketchy and TU, respectively, showing our method’s suit-
ability for both zero-shot learning and generalized settings.
Fine-grained ZS-SBIR. In fine grained setting, we expect
our method would not perform well, as our model is better
suited for coarse-grained retrieval by design. Surprisingly,
however, Table 3 shows that ours comparably performs with
state-of-the-art models specially designed for fine-grained
setting, with minimal changes described in Sec. 3.3.

Interestingly, we observe that our [original] embeddings
outperform our [converted] in this setting, unlike the ZS-
SBIR task. We speculate that the conversion to the exact
position in the target modality space is more challenging in
the fine-grained setting, leading to a slight decline in perfor-
mance with converted embeddings.
Visualization. Fig. 3 visualizes our learned embedding vec-
tors corresponding to various modalities and classes. We
randomly select 100 vectors from songbird (pink), sword
(blue), and wheelchair (green) and plot with t-SNE projec-
tion. Photos are marked with •, sketches are with ▲, and the
converted photo embeddings from sketches are with +, for
each class. We observe clear modality gap between photos
and sketches, and also see that converted embeddings are
clearly closer to the target, distinguished from the origin.

5.2. Ablation Study

Effect of Loss Terms. To evaluate the impact of individual
loss terms, we conduct an ablation study to add loss terms

Figure 3. T-SNE visualization on Sketchy-Ext [18]

Table 4. Ablation on Loss Terms for ZS-SBIR

Loss Sketchy-Ext TU-Berlin-Ext QuickDraw-Ext

Lclip Lsem Lrec Lmc Lortho m@200 P@200 m@all P@100 m@all P@200

✓ 68.50 74.90 70.53 77.62 32.17 41.85
✓ ✓ 68.86 75.21 70.52 77.67 32.56 42.44
✓ ✓ ✓ 69.05 75.44 70.49 77.68 32.20 42.29
✓ ✓ ✓ ✓ 69.05 75.46 70.45 77.64 32.16 42.25
✓ ✓ ✓ ✓ ✓ 69.02 75.44 70.40 77.73 32.74 42.49

Table 5. ZS-SBIR on Sketchy-ext with unpaired datasets
Method mAP@200 Prec@200

CLIP-AT∗ / 0.8 62.59 70.26
Ours / 0.8 67.97 74.51
Ours / 0.8 + photo / 0.2 68.25 74.67
Ours / 0.8 + sketch / 0.2 68.56 75.11

one by one, reported in Table 4. (Note that Lclip is always
retained as an essential term for contrasting vectors.)

In general, a better result is achieved when more loss
terms are used. Taking a closer look, however, we observe
slightly different patterns across datasets. On Sketchy-
Ext [18], most proposed losses, except for the orthogonal
loss, demonstrate effectiveness when added. We speculate
that the more stringent constraints imposed by the orthog-
onal loss slightly impede achieving superior outcomes. On
QuickDraw-Ext [5], the inclusion of Lrec and Lmc leads to
a slight decline in performance, while the orthogonal loss
significantly improves the performance, unlike the case on
Sketchy-Ext. This suggests the potential interactions among
these loss terms. Experiments on TU-Berlin-Ext [18] show
distinct trends. Introducing more terms brings about a de-
cline in mAP, while the opposite is observed in precision.

Effect of training on additional unpaired dataset. Our
indirect alignment not only leads to improved performance
but also facilitates semi-supervised approach, taking advan-
tage of additional datasets containing only photographs or
sketches. To assess the impact of additional unpaired data,
we conduct an experiment on Sketchy-Ext [18] as follows.
First, a model is trained on 80% of the seen categories (83



Table 6. Ablation on Model Types for ZS-SBIR

Loss Sketchy-Ext[18] TU-Berlin-Ext[18] QuickDraw-Ext[5]

m@200 P@200 m@all P@100 m@all P@200

Ours full 69.05 75.46 70.49 77.68 32.74 42.49
Ours (g frozen) 67.25 74.23 68.72 75.12 30.83 37.43

Table 7. Ablation on Textual Intervention
λclip-img 1.0 0.8 0.5
Acc@1 29.96 27.31 24.71
Acc@5 58.53 54.79 70.71

out of 104). Then, instances of either photos or sketches
are added from the remaining seen classes, corresponding
to the 20% of the entire seen categories (21 out of 104).

As shown in Table 5, seeing more samples even from
unrelated classes improves the results. This is aligned with
observations in previous studies [1, 26, 27]. We emphasize
that other methods assuming paired sketches and photos are
not eligible to take advantage of these unimodal datasets.

Taking a deeper look, adding more sketches yields
greater advantage than adding more photos. Augmenting
sketches is more efficient but expensive. We leave further
investigation as a potential future work.

Effect of textual supervision. In categorical SBIR, our
proposed model aligns sketches and photos solely via texts.
We hypothesize that the text encoder would play an impor-
tant role, since the image distribution should, to some ex-
tent, follow the fixed text distribution if the text encoder is
frozen and the text distribution is fixed.

Table 6 evaluates the effect of fine-tuning the text en-
coder. As expected, the performance slightly drops when
the text encoder remains frozen. We interpret that realigning
the text encoder leads to a more effective utilization of latent
space, perhaps achieving higher uniformity [40] and better
adaptation to SBIR datasets, while simultaneously prevent-
ing catastrophic forgetting.

For FG-SBIR, we explore several different values for
λclip-img in Table 7. We observe that alignment with the class
hinders the exact alignment of identical instances between
sketches and photos, even when we unfreeze the text en-
coder. This is in contrast to [26], which suggests that such
alignment facilitates accurate alignment in the latent space.

5.3. Qualitative Results

We qualitatively compare our retrieval results with the
strongest baseline, CLIP-AT [26], in Fig. 4 (categorical) and
Fig. 5 (fine-grained). Refer to the supplementary material
for more examples. Overall, our method retrieves correct
photos for most classes.

For the fine-grained task, even incorrectly marked im-
ages turn out to be often correct. For instance, for a drawing
of a wind turbine (row 2 in Fig. 5), all 5 photos retrieved by
our model are indeed wind turbines, although they are not
labeled in the ground truth. The baseline also retrieves 3
wind turbine images, but it includes two windmill images

Figure 4. Categorical-ZS-SBIR. Top-5 Retrieved images on
QuickDraw-Ext [5]. Correct samples are circled.

Figure 5. FG-ZS-SBIR. Top-5 Retrieved images on Sketchy [5].
Correct samples are circled.

as well (at the 3rd and 5th). In row 3 and 4 of Fig. 5, our
method ranks the true image lower than the baseline does,
but the retrieved photos actually exhibits greater visual sim-
ilarity with the queried sketches.

6. Summary and Limitations

We present a novel approach that aligns the joint embed-
ding space by disentangling modality-specific nuances from
semantic content. Our method excels in multiple zero-shot
scenarios of sketch-based image retrieval, setting a new per-
formance benchmark.

Despite the success on categorical setting, however, our
model turns out not to align well at instance level. This is
somewhat expected, as our model is designed to be trainable
with unpaired sketches and photos, but this is not applicable
on fine-grained setting. Improving fine-grained alignment
without paired examples will be an interesting future work.
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