Local Large Language Models for Recommendation

Yujin Jeon
jyj950309@snu.ac.kr
Seoul National Univ.

Seoul, Korea

Abstract

Unlike traditional classification tasks, recommendation is inher-
ently subjective—whether an item should be suggested depends
not only on user preferences and item semantics, but also on latent
behavioral patterns and contextual cues. While recent LLM-based
recommenders excel at modeling semantics and intent through gen-
erative reasoning, they often fail to capture collaborative signals
and suffer from inefficiencies when applied globally across large
interaction spaces. We propose Local Large Language Models
for Recommendation (L>Rec), a novel model-agnostic frame-
work that integrates collaborative filtering (CF) with generative
LLMs through localized modeling. Our approach first applies a light-
weight CF model to derive user and item embeddings, then clusters
them into behaviorally coherent subgroups. Each cluster is assigned
a dedicated generative LLM—referred to as a local LLM—trained
only on its corresponding data subset. This enables fine-grained
personalization while improving training efficiency through paral-
lelism. At inference time, predictions from local models are aggre-
gated via a fusion strategy, with a global CF fallback when needed.
To the best of our knowledge, this is the first LLM-based recom-
mendation framework to incorporate local collaborative structure.
Experiments show that it achieves state-of-the-art performance
with significantly better scalability and efficiency.

CCS Concepts

«+ Information systems — Recommender systems.

Keywords
Collaborative Filtering, Recommendation, Large Language Models

ACM Reference Format:

Yujin Jeon, Jooyoung Kim, and Joonseok Lee. 2025. Local Large Language
Models for Recommendation. In Proceedings of the 34th ACM International
Conference on Information and Knowledge Management (CIKM °25), November
10-14, 2025, Seoul, Republic of Korea. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3746252.3761280

1 Introduction

Recommender systems are fundamental to modern information
retrieval, powering personalized content delivery across domains
such as e-commerce, streaming, education, and social platforms.
Collaborative filtering (CF) [4, 8, 15, 16, 18, 25, 41] have long served

*Corresponding author

This work is licensed under a Creative Commons Attribution 4.0 International License.
CIKM °25, Seoul, Republic of Korea

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2040-6/2025/11

https://doi.org/10.1145/3746252.3761280

Jooyoung Kim
gracekim15237@snu.ac.kr
Seoul National Univ.
Seoul, Korea

Joonseok Lee*
joonseok@snu.ac.kr
Seoul National Univ.

Seoul, Korea

CF Model

CF embedding

Mapping Layer

[CF Model

CF embedding

item1, item2, item3...

user1, user2, user3...

—Y

LLM

UOIEPUBILIOOBY

Recommendation

Recommendation

(a) OOV tokens (b) CF + LLM (¢) CF - LLM

Figure 1: Different approaches to integrate collaborative fil-
tering (CF) signals into large language models (LLMs) for
recommendation.

as the backbone of recommender systems, offering effective model-
ing of user—item interactions through shared latent spaces. How-
ever, these methods often fall short in capturing the full complexity
of user behavior, particularly in scenarios involving rich semantic
contexts that go beyond user co-occurrence statistics.

In recent years, large language models (LLMs) have emerged as
powerful tools for unifying and advancing recommendation tasks [7,
13,17, 24,27, 39, 50, 52, 54]. Their ability to understand and generate
natural language enables prompt-based recommendation, multi-
task generalization, and rich inference over textual metadata and
interaction histories. Despite their promise, however, most existing
LLMs are optimized for semantic understanding and generative
fluency, but fall short in leveraging collaborative signals. Since
users and items are typically represented as plain text tokens rather
than distinct identifiers, these models often fail to capture fine-
grained user—item co-preference patterns. Consequently, they tend
to perform well in cold-start settings, but underperform in warm-
start scenarios compared to traditional CF models [50].

In an effort to address this challenge, recent studies have explored
incorporating collaborative signals into LLM-based recommenders.
One straightforward approach is to introduce additional out-of-
vocabulary (OOV) tokens into the LLM’s vocabulary to represent
each user and item explicitly, as illustrated in Fig. 1(a). This approach
allows the model to directly learn distinct representations. However,
adding separate tokens for each user and item significantly enlarges
the token space, posing scalability issues for real-world applications.
Specifically, the vocabulary size of a typical LLM (e.g., 32,000 for
T5) is quickly overwhelmed even by a recommendation system of
moderate scale with O(10°) users and items, potentially degrading
the quality of the pretrained vocabulary and leading to suboptimal
performance [13, 48, 50].

An alternative strategy is to explicitly inject CF signals into the
LLM recommendation pipeline as shown in Fig. 1(b). This typically
involves learning user and item embeddings with a CF model and
projecting them into the LLM representation space, avoiding OOV

https://orcid.org/0000-0002-0786-8086
https://doi.org/10.1145/3746252.3761280
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3746252.3761280

CIKM °25, November 10-14, 2025, Seoul, Republic of Korea

token inflation. However, this approach often suffers from mis-
alignment issues between the CF embedding space and the LLM’s
semantic space [39, 52]. Since the two spaces are trained by fun-
damentally different objectives (user-item interaction modeling vs.
language modeling), projection from one to the other often fails
to bridge the gap and to preserve the relational structure between
users and items. Moreover, without explicit user/item identifiers, it
is difficult to precisely map CF signals into the LLM space, further
reducing the efficacy of this integration [31, 50].

To overcome these limitations, we propose Local Large Lan-
guage Models for Recommendation (L3Rec), a model-agnostic
framework that leverages CF signals to guide the construction of
localized LLMs tailored to coherent sub-communities of users and
items, illustrated in Fig. 1(c). Our work is inspired by prior success
in localized CF methods [5, 20, 22], which rest on the local low-rank
assumption: user—item interactions are more predictable within a
coherent and focused subgroup defined by shared interests or topics.
This principle has been shown to improve the recommendation per-
formance with matrix factorization [20, 22] and autoencoder-based
models [5], and we extend this insight to LLM-based recommenders.

Specifically, we first obtain user and item similarity structure by
training a lightweight CF model. Based on the learned similarity
of the CF-based embeddings, we group users and items into coher-
ent communities. Then, each resulting community is assigned a
dedicated local LLM, trained solely on its corresponding subset of
interactions. Unlike the global model covering all users and items
at the same time, each local LLM needs only the users and items
within the community it models. This allows each model to special-
ize in the collaborative and semantic nuances of its assigned group,
removing nosiy signals from dissimilar users or items. Moreover,
unlike prior approaches that rely on explicit token injection or em-
bedding projection, our L3Rec implicitly integrates collaborative
signals through the discovered local community structure, avoid-
ing the need to expand the token space or align the embedding
spaces of CF model and LLM. Additionally, since the local LLMs
are trained independently, the training process can be parallelized,
further enhancing efficiency.

At inference, each user may be associated with one or more
local models based on affinity, and predictions from these models
are generated in parallel. The final recommendation is obtained by
aggregating the outputs from the relevant local models. For users
or items that do not belong to any identified cluster, a global CF
model is employed as a fallback to ensure complete coverage.

Our contributions are summarized as follows:

e We propose a novel model-agnostic framework that inte-
grates collaborative filtering-based local community assign-
ment with LLMs to model fine-grained user-item prefer-
ences.

e The proposed framework significantly enhances scalability
and efficiency by distributing training and inference across
multiple local models, each operating on a small, focused
subset of interactions.

o Through extensive experiments, we verify the effectiveness
of the proposed method on both top-N and sequential rec-
ommendation tasks.

Yujin Jeon, Jooyoung Kim, and Joonseok Lee

2 Related Work

LLM-based Recommendation. Large language models (LLMs)
have recently gained attention in the recommender systems com-
munity for their ability to unify diverse tasks under a text-to-text
generation paradigm. Early studies [11, 27, 36, 43, 51] explored
leveraging pretrained language models such as GPT and BERT by
reformatting user-item interactions as natural language sequences.
For instance, GPTRec [36] utilized GPT-2 for generative sequential
recommendation, representing item IDs as sub-token sequences to
perform next-item prediction in an autoregressive fashion. Other
works [12, 27, 47] demonstrated that LLMs can serve as recom-
mender models, even in zero-shot or prompt-based settings.

While these approaches highlight the potential of generative
language models for recommendation, they also expose several key
limitations. A primary concern is that most existing approaches [1,
3,7, 11, 12, 24, 27, 32, 36, 45, 51] heavily depend on item textual
content, representing users and items purely through natural lan-
guage descriptions rather than unique identifiers. This reliance on
semantic representations limits the use of CF signals—an essen-
tial component for modeling implicit user preferences—thereby
weakening personalization in recommendation scenarios.

To overcome these limitations, recent works have sought to
incorporate collaborative signals more directly into LLM-based rec-
ommenders. One approach involves introducing Out-Of-Vocabulary
(OOV) tokens [13, 54] or employing vector quantization techniques
[10, 37, 38, 42, 52] to encode each user and item as unique identifiers.
However, these strategies significantly increase the token vocab-
ulary size, leading to scalability challenges and degraded model
efficiency. Other lines of research [2, 26, 29, 30, 39, 46, 50] inte-
grate explicit collaborative filtering (CF) models alongside LLMs.
For instance, CoLLM [50] learns user and item embeddings using
a CF model and maps them into the LLM space via a multilayer
perceptron (MLP). However, such approaches often face alignment
challenges between the CF embedding space and the LLM represen-
tation space due to the fundamentally different training objectives
of the two models [31].

Another major concern is the high computational cost of LLM-
based recommenders, which poses challenges for real-time deploy-
ment and scalability [27, 28]. The large size of LLMs results in
slow inference times and high computational costs during training.
POD [24] attempts to alleviate this by introducing task-alternated
training and using continuous task-specific tokens at inference.
However, training a global LLM on the full interaction set remains
resource-heavy and can hinder the model’s ability to learn fine-
grained preference patterns.

Our framework addresses these challenges by constructing local
user-item communities based on the embeddings learned from a
CF model, and training a dedicated local LLM for each commu-
nity using only its subset of interactions. This not only reduces
the training time, but also allows us to incorporate collaborative
signals effectively without requiring an enlarged token vocabulary
or complex alignment mechanisms. In contrast to global LLMs that
serve all users uniformly, our localized modeling approach enables
specialization over user segments with similar preferences, result-
ing in both improved efficiency and enhanced recommendation
performance.

Local Large Language Models for Recommendation

Local Collaborative Filtering. Traditional collaborative filter-
ing methods, such as matrix factorization [18], typically assume a
global latent space in which all users and items are embedded. This
implies that a single set of latent dimensions is used to represent the
preferences of all users and the characteristics of all items. While
effective for capturing broad trends, this global assumption often
fails to model the rich diversity of user behaviors—particularly
when preferences are non-uniformly distributed or multi-modal.
As a result, global models tend to overfit popular preferences and
underperform on niche interests or minority user groups.

Local collaborative filtering (CF) methods [23] were introduced
to address the limitations of global models. These approaches learn
multiple specialized models over subsets of similar users or items,
allowing each model to capture fine-grained patterns within lo-
calized regions of the interaction space. A foundational example
is LLORMA [19-21], which approximates the rating matrix using
a set of overlapping low-rank models, each trained on a neigh-
borhood of users and items. This framework relaxes the global
low-rank assumption and allows for more expressive modeling
of local preferences. While this improved accuracy by capturing
localized variation, its performance gains were largely attributed
to ensemble effects and it lacked global latent factors, limiting its
ability to generalize to sparse regions.

To mitigate this, Subsequent research proposed hybrid mod-
els such as GLSLIM [35] and sGLSVD [6] which introduce global-
local frameworks, combining a shared global model with user clus-
ter—specific components to balance generalization and specializa-
tion. However, they still rely on linear modeling and hard clustering,
which may not fully capture overlapping or nonlinear structures in
user behavior.

LOCA [5] advanced this direction by introducing local autoen-
coders and a coverage-based community discovery mechanism.
This ensemble of small, coherent models enables nonlinear repre-
sentation learning while improving coverage and personalization.
Building on this motivation, our work extends the notion of locality
into the domain of large language models (LLMs) for recommen-
dation. Instead of relying on autoencoders, we train a dedicated
generative LLM for each user—item community, discovered via col-
laborative filtering (CF) embeddings. Unlike LOCA, which relies on
continuous latent representations, our approach uses pretrained
language models and leverages textual reasoning over interaction
data, achieving enhanced recommendation quality while maintain-
ing efficiency through localized training.

3 Problem Formulation

Given a set of n users U = {uy,...,u,} and a set of m items V =
{v1,...,Um}, each user interacts with a subset of items over time.
The recommendation task aims to predict the N most probable
items that a user is likely to interact with next, given their historical
behavior. Here, the historical user interactions can be provided
either as an unordered set or as a temporal sequence. The former
setting has been studied under the name of top-N recommendation,
while the latter is called sequential recommendation task.
Formally, each user u € U is associated with an interaction
sequence Sy = [v1,02,...,0;], where each v; € V denotes an item
previously engaged by the user. The objective is to conditionally
generate a ranked list R, of items from V that are most relevant

CIKM 25, November 10-14, 2025, Seoul, Republic of Korea

to u based on Sy. The top-N recommendation task takes S, as
a set, instead of an ordered sequence. We evaluate our proposed
approach under both experimental settings.

4 The Proposed Method

Our proposed framework takes a divide-and-conquer strategy on
the recommendation task, following the seminal papers in local
recommendation models [5, 20, 22]. That is, we divide the entire set
of users and items into several subsets of them, sharing common
tastes and characteristics, derived through collaborative filtering
and a tailored community assignment strategy (Divide; Sec. 4.1).
Then, we train a specialized generative LLM for each localized
sub-community of users and items, using only the interactions ob-
served within this community (Conquer; Sec. 4.2). Once multiple
local models are trained, we predict preference by a user on an item
by aggregating predictions from both local and global models (Com-
bine; Sec. 4.3). An overview of the entire framework is illustrated
in Fig. 2.

4.1 Local Community Discovery

We discover local communities sharing similar tastes in a bottom-up
fashion, following [5, 20]. That is, a user is chosen as an anchor, and
other users relevant to the anchor participate in the local commu-
nity centered on this anchor point. In order to collect these relevant
users, we begin by training a lightweight collaborative filtering
(CF) model to obtain initial embeddings. This model can be any
standard CF method. (In our experiments, we adopt MultVAE [25].)
The resulting model also serves as the global backbone Mgjghal
for users not assigned to any local community during the local
assignment process.

To construct g local user communities, we first select g anchor
users A = {a(l), e a(q)} to serve as representatives. Anchors are
selected using a greedy coverage-based algorithm [5] that itera-
tively selects users connected to the largest number of uncovered
users in a similarity graph, thereby maximizing the coverage of
local models.

For each anchor user al/), we compute the similarity between its
embedding al/) and each user u € U based on the scaled arccosine
distance:

sl(lj) = dist(a(j),u) = arccos aF”_-u . (1)
[ESATRM

Then, we compute a non-negative affinity weight W,SJ) between
user u and anchor a(/) using a kernel function K. This weight
reflects how closely the user u is associated with the anchor ald).
Formally,

wi =Ky« (1= 5P <hl, @

where 1[-] denotes the indicator function. The choice of the kernel
K}, is a hyperparameter, and we adopt the Epanechnikov kernel
following [20]. The similarity threshold h determines the neigh-
borhood size, allowing only users with sufficient similarity to con-
tribute to the community. Users with non-zero affinity to an anchor

are grouped into the corresponding community U; = {u | wb(,j S

0}.

CIKM °25, November 10-14, 2025, Seoul, Republic of Korea

Divide: Discover Local Communities

i1 I I3 Iy Is i
U | 1 1|1
U 1|1
uz | 1 1 1 * CF

Model

Ug | 1| 1| 1
us | 1 1 Mglobal
Usg 1

user-item interaction data user embeddings

anchors & affinities

Yujin Jeon, Jooyoung Kim, and Joonseok Lee

Local Communities: Clustered via Affinities

CF Model
Mglobal

Local) S

1
3D
Combine: Local Inference and Fusion Conquer: Train Local LLMs +
Smoothing
Prompt: user 1 Kernel
My (| item1,4... v ¥

H H _ W(l) W(Z)

Fusion ~ Label: item 5 (. 3 >0 6=0 A
u3*§] afﬁnity Weights Wiiter] ->R3 TaveT: ..u,... - H 5

: M, : 1) [D;: Local training dataset for community j.

(2)
; {W3 » W3 } M; Prompt: user 3
*C3” item 1, 3...

Uj: Set of users assigned to community j.
V;: Item subset associated with U;.

Figure 2: Overview of the proposed L’Rec framework, following a divide-conquer-combine strategy.

S ® g S ® g

m o g m o g

[08 [pﬁ O[‘&‘% [08 Ml‘ao
o] o]

“"5® w5, B Pad & %

Sub-community 1
Local Model 1 |

Sub-community 2
Local Model 2

(a) User-only assignment

Sub-community 1
| Local Model 1 |

Sub-community 2
Local Model 2

(b) User-and-Item assignment

Figure 3: Two variants of local community assignment. The
user in blue indicates the anchor user.

This procedure results in g potentially overlapping user commu-
nities {Uj, .. ., Wq}, each corresponding to a distinct local LLM that
handles training and inference for its assigned users. The affinity
weights w,gj) can be reused at inference time to enable personalized
prediction fusion across the local models (Sec. 4.3.2).

In addition to assigning users to local communities, our approach
can be further extended to the local community construction with
items as well. Specifically, for each user community U;, we option-
ally define a corresponding item set V; which consists of items that
are similar to the anchor user a'/). (Recall that users and items are
embedded in the common latent space with collaborative filtering.)
This results in more fine-grained and focused local datasets, where
both users and items are related in a collaborative manner. Because
both user and item spaces are narrowed, this variant produces more
specialized local subgroups.

Note that assigning both users and items to local communities
limits the model’s ability to perform sequential recommendation.

Since each local dataset resulting from this assignment strategy
contains only a subset of a user’s interaction history, the continuity
of item sequences is disrupted, hindering the temporal modeling
essential for sequential tasks.

Accordingly, we define two variants of our framework, illustrated
in Fig. 3:

e User-only assignment: each local model is trained on all
interactions of users within the community, including their
full item histories. This supports both Top-N and sequential
recommendation.

e User-and-item assignment: each local model is trained
only on interactions between users and a subset of similar
items. This variant is applicable only to Top-N recommen-
dation, as it sacrifices temporal coherence.

We evaluate both strategies in Sec. 5.3 to investigate the trade-off
between task generality and the compactness of local training sets.

4.2 Training Local LLMs

For the j-th local community constructed in Sec. 4.1 (with j =
1,--+,q), we define a corresponding local interaction dataset D;
and fine-tune a local LLM M; on it. Note that any generative LLM
recommendation model with support for fine-tuning can be adopted
as M;.

Each training sample (x,y) € D;j consists of a textual prompt
x that encodes the user’s interaction history and the target item
y that the user has actually interacted after the given history. The
training objective is to minimize the cross-entropy loss commonly
used in generative LLMs:

) _
Llocal - Z

(xj,y;)€D;

log P, (4 | 7). ®)

Local Large Language Models for Recommendation

Algorithm 1 Inference with Local LLMs and Weighted Fusion

Require: Batch of user embeddings U = {uy, ..., up}; local mod-
els {My,..., Mq}; affinity weights {wl.(j) }; global fallback
model Mgopal; fusion function Fuse ()

Ensure: Final recommendations {Ri, ..., Rp}

1: for each user embedding u; € U do
22 Cj « GetRelevantCommunities(u;) //local communities
with wi(j) >0

3. Initialize item prediction list P; < 0

4. for all communities j € C; in parallel do
5 x « ConstructPrompt(u;)

6: g] — MJ (X)

7: Extract predicted items and ranks from §j; and add to P;
8. end for

9: if P; # 0 then

10: R; « Fuse(P;, {w;j)})

1. else

12: Ri — Mglobal(ui)

132 end if

14: end for

15: return {l§1, cee ﬁB}

Since our framework is model-agnostic, the exact form of the loss
can be adapted depending on the specific LLM-based recommender
used. As each local model M; does not require information from
other local models, we can train all of them in parallel. Since each
training set D; is relatively smaller than the entire data, training
each model is usually faster. Under a highly distributed training
setup, training our model can be even faster than training a huge
single global model [20]. We empirically demonstrate this in Sec. 5.4.
To sum up, this strategy maintains scalability while allowing each
model to specialize in its respective user—item distribution.

4.3 Local Inference and Fusion

At inference, each local model predicts preference of candidate
items by the target user based on their local information in parallel
(Sec. 4.3.1), and those estimated scores are aggregated by one of the
proposed fusion strategies below (Sec. 4.3.2).

4.3.1 Parallel Inference with Local LLMs. Each user u can be asso-
ciated with one or more communities based on their embedding
similarity from the community assignment process in Sec. 4.1. Let
C(u) denote the set of relevant communities for user u. For each
relevant community in C(u), a dedicated local LLM M is assigned.
Each local model M generates a recommendation score p; (u, i) for
item i € V; conditioned on the prompt derived from the interaction
history of user u:

pj(u,i) = Py, (i | Prompt(u)) 4)

All relevant local models are queried in parallel, and each pro-
duces a ranked list of items based on their generation outputs.

4.3.2 Fusion Strategy for Final Recommendation. To obtain a uni-
fied Top-N recommendation list, we aggregate the outputs from
multiple local models using either standard Reciprocal Rank Fusion

CIKM 25, November 10-14, 2025, Seoul, Republic of Korea

Table 1: Statistics of the datasets

Dataset | # User #Item # Interaction
Sports 35,598 18,357 296,337
Beauty | 22,363 12,101 198,502
Toys 19,412 11,924 167,597

(RRF) or our proposed weighted variant (WRRF), which incorporates
user—community affinity.

Reciprocal Rank Fusion (RRF). For each item i retrieved from any
local model M; € C(u), the RRF score is computed as:
1
RRF, (i) = _— 5
u(@)) Z k + rank; (u, i) ©)
jeC(u)

where rank; (u, i) is the rank of item i assigned by model M, and k
is a damping constant to prevent overly favoring top-ranked items.

Weighted Reciprocal Rank Fusion (WRRF). To account for the
user’s affinity to each community, each rank contribution is weighted

(),

by the community-specific affinity score w;;

WRRF, () =y w)- . (6)

i€Ctw k + rank; (u, i)

Global Model Fallback. If a user u has no associated communities,
we fall back to the global CF model Mgjopa1- The global score is
computed by

Pglobal (4 1) = Pp(i | w),)
where u and i are the CF representations of user u and item i of
Mgiobal-

Final Recommendation. The final recommendation list is con-
structed by aggregating all available scores and selecting the top-N
items:

Ry = Top-N items ranked by Fusiony, (i) (8)
This fusion framework ensures robust coverage, personalization,
and sensitivity to user-specific community membership. The overall
inference process is summarized in Algorithm 1.

5 Experiments

We conduct extensive experiments to answer the following research
questions:

e RQ1: How does the proposed approach L*Rec perform com-
pared to existing methods?

e RQ2: Does the proposed local training strategy reduce compu-
tational cost while maintaining or improving accuracy?

e RQ3: How does each component of our framework contribute
to the overall recommendation performance?

5.1 Experimental Settings

5.1.1 Datasets. We conduct experiments on three Amazon![34]
datasets: Sports & Outdoors, Beauty, and Toys & Games. Each
record in this dataset is composed of a user ID, an item ID, a rating,
a textual review, and the corresponding timestamp. The statistics
of each dataset are presented in Tab. 1. To ensure consistency in

!http://jmcauley.ucsd.edu/data/amazon/

CIKM °25, November 10-14, 2025, Seoul, Republic of Korea

Table 2: Average number of users in each local community

Dataset | # User Coverage
Sports | 31,911 89.6%
Beauty | 20,659 92.3%
Toys 16,471 84.8%

evaluation, we follow the data preparation and train-test splitting
protocol established by previous works [7, 24].

5.1.2 Evaluation Metrics. To measure the performance of our rec-
ommendation models, we adopt two widely used ranking-based
evaluation metrics: Hit Ratio (HR@K) and Normalized Discounted
Cumulative Gain (NDCG@K), where K € {5, 10}. These metrics
are computed based on the ranked list of predicted items for each
user and are standard in evaluating both top-K and sequential
recommendation tasks.

5.1.3 Implementation Details. We utilize POD [24] as the local
LLMs and MultVAE [25] as the global collaborative filtering model.
Following prior baselines, we adopt T5-small as the backbone of
the language models and train using a learning rate of 0.0005. All
experiments are conducted in a parallel setting using NVIDIA A6000
GPU with 32GB of memory. Unless otherwise specified, we set the
hyperparameters to h = 1.0 and k = 0 across all experiments. We
fix the number of local models to g = 10, and report the average
number of users assigned to each local model in Tab. 2.

5.2 Baselines

We compare the performance of our method with the following
groups of baselines.

5.2.1 Sequential Recommendation.

e CASER [44]: Convolutional Sequence Embedding Recommen-
dation (CASER) treats a user’s recent item interactions as an
image-like matrix and applies horizontal and vertical convolu-
tional filters to capture sequential patterns.

e HGN [33]: Hierarchical Gating Networks (HGN) models both
long- and short-term user preferences through gated recurrent
units and a hierarchical attention mechanism to dynamically
combine historical behaviors.

e GRU4Rec [9]: GRU4Rec is one of the earliest RNN-based
recommenders that applies Gated Recurrent Units to model
session-based sequences for next-item prediction.

e BERT4Rec [43]: BERT4Rec reformulates sequential recom-
mendation as a bidirectional Masked Language Modeling (MLM)
task, using Transformer encoders to learn item dependencies
in both directions.

e FDSA [49]: Feature Disentangled Self-Attention (FDSA) en-
hances Transformer-based models by disentangling feature
types (e.g., temporal, positional) in self-attention layers to bet-
ter model user behavior patterns.

o SASRec [14]: Self-Attentive Sequential Recommendation (SAS-
Rec) is a Transformer-based model that applies self-attention
to capture dependencies between past items for next-item pre-
diction.

e S3-Rec [53]: Self-Supervised Sequential Recommendation (S3-
Rec) integrates auxiliary self-supervised objectives (e.g., item

Yujin Jeon, Jooyoung Kim, and Joonseok Lee

masking, sequence permutation) into SASRec to enhance gen-
eralization under sparse data.

e P5 [7]: Pretrain, Personalized Prompt, and Predict Paradigm
(P5) unifies various recommendation tasks under a language
modeling framework by framing them as natural language
prompts and responses.

e POD [24]: PrOmpt Distillation (POD) improves LLM-based
recommendation by learning soft continuous prompts for each
task, reducing the need for full model finetuning and enabling
efficient multi-task learning.

5.2.2 Top-N Recommendation.

e MF [18]: Matrix Factorization (MF) is a foundational collab-
orative filtering approach that models user-item interactions
through the dot product of latent embeddings. The training
objective is optimized using Bayesian Personalized Ranking
(BPR) [40], which is designed to enhance ranking performance
by favoring observed interactions over unobserved ones.

e MLP [4]: Multi-Layer Perceptron (MLP) serves as a neural
alternative to MF, projecting user/item representations into
a shared space through multiple non-linear transformations.
Similar to MF, the model is trained with the BPR loss.

e P5 [7] : Again, P5 reformulates the recommendation task as
a natural language generation problem. It is trained to sup-
port five distinct recommendation scenarios, including both
sequential and top-N recommendation tasks.

e POD [24] : Again, building upon P5, POD improves training
and inference efficiency by introducing continuous prompts.

5.3 Overall Performance (RQ1)

We first compare the overall performance of our model with the
aforementioned baselines on the top-N and sequential recommen-
dation tasks. For our method, we report the results under two dif-
ferent community assignment strategies: the user-only assignment
(U) and user-item assignment (UI). For the top-N recommendation
task, we report results for both variants to examine the impact of
the community assignment strategies. Note that for the UI variant,
the hyperparameter h is tuned to 1.1, 1.0, and 1.3 for the Sports,
Beauty and Toys dataset respectively. For the sequential recom-
mendation task, we report results only for the user-only setting
as discussed earlier in Sec. 4.1, due to the disruption of temporal
interaction sequences when item clustering is applied. To aggregate
predictions from local models, we employ Reciprocal Rank Fusion
(RRF) as our integration strategy.

Tab. 3-4 compare the performance of competing methods in
the sequential and top-N recommendation tasks, respectively. As
shown in the tables, our method consistently achieves the state-of-
the-art performance across all three datasets and evaluation metrics
in both recommendation tasks. The improvements are particularly
notable in the sequential recommendation task, where our model
exhibits substantial gains - especially on the Beauty domain with
over 20% improvement across all metrics. The improvement in
the Toys domain is relatively modest, possibly due to its sparser
user—item interactions, weaker collaborative signals, and higher
variability in user intent and item semantic. Nevertheless, our model
achieves the best performance across all evaluation metrics. This
result demonstrates the effectiveness of our method in capturing

Local Large Language Models for Recommendation

CIKM 25, November 10-14, 2025, Seoul, Republic of Korea

Table 3: Overall performance comparison on sequential recommendation (%)

Method Sports Beauty Toys
HR@5 NDCG@5 HR@10 NDCG@10 | HR@5 NDCG@5 HR@10 NDCG@10 | HR@5 NDCG@5 HR@10 NDCG@10
Caser 1.16 0.72 1.94 0.97 2.05 1.31 347 176 1.66 1.07 2.70 141
HGN 1.89 1.20 313 1.59 3.25 2.06 5.12 2.66 3.21 2.21 4.97 2.77
GRU4Rec | 129 0.86 2.04 1.10 1.64 0.99 2.83 1.37 0.97 0.59 176 0.84
BERT4Rec | 1.15 0.75 191 0.99 2.03 1.24 3.47 1.70 1.16 0.71 2.03 0.99
FDSA 1.82 1.22 2.88 1.56 2.67 1.63 4.07 2.08 2.28 1.40 3.81 1.89
SASRec 2.33 1.54 3.50 1.92 3.87 2.49 6.05 318 4.63 3.06 6.75 3.74
S$3Rec 251 1.61 3.85 2.04 3.87 2.44 6.47 3.27 443 2.94 7.00 3.76
P5 2.72 1.69 3.61 1.98 5.03 3.70 6.59 4.21 6.48 5.67 7.09 5.87
POD 4.96 3.96 5.76 419 5.37 3.95 6.88 443 6.91 5.99 7.42 6.10
L*Rec (U) | 5.54 4.47 6.46 4.77 6.62 4.97 8.37 5.53 7.21 6.29 7.67 6.44
Gain | 11.7% 12.9% 12.2% 138% | 233% 25.8% 21.7% 248% | 43% 5.0% 3.4% 5.6%
Table 4: Overall performance comparison on top-N recommendation (%)
Method Sports Beauty Toys
HR@5 NDCG@5 HR@10 NDCG@10 | HR@5 NDCG@5 HR@10 NDCG@10 | HR@5 NDCG@5 HR@10 NDCG@10

MF 14.04 8.48 25.63 12.20 14.26 8.57 25.73 12.24 10.66 6.41 20.03 9.40
MLP 15.20 9.27 26.71 12.96 13.92 8.48 25.42 12.15 11.42 6.88 20.77 9.40
P5 15.14 1049 21.96 12.69 15.66 10.78 23.17 13.18 13.22 8.89 20.23 11.14
POD 20.86 15.06 28.73 17.56 19.26 13.91 26.70 16.29 14.33 10.09 20.82 1215
L’Rec (U) | 23.19 16.99 30.88 19.47 21.80 15.95 29.70 18.49 16.44 11.61 22.82 13.65
L’Rec (UT) | 26.88 19.68 35.19 22.35 2228 16.07 30.12 18.59 14.67 9.52 2185 11.83
Gain | 285% 30.6% 22.4% 273% | 163% 16.8% 13.8% 156% | 147% 15.1% 9.6% 12.3%

Table 5: Comparison of training efficiency

Sports Beauty Toys
Meth
ethod ‘ Time Epochs | Time Epochs | Time Epochs
POD 6h 40m 29 4h 29m 26 2h 51m 23
L3Rec 5h 50m 23 3h 49m 24 2h 32m 20
Gain | 125% 207% | 149% 77% | 111% 13.0%

temporal dynamics and modeling user preferences within localized
interaction patterns.

In the top-N recommendation setting, our method outperforms
the baselines in all scenarios, with the L3Rec (UI) variant achieving
the best results in most cases. This confirms that modeling both
users and items that are similar within local communities enhances
the ability to capture fine-grained collaborative signals, leading
to more precise ranking—especially for the top-ranked items, as
reflected in the strong HR@5 and NDCG@5 scores. In the Toys
domain, on the other hand, we observe that L3Rec (U) outperforms
L3Rec (UI). This can be attributed to the higher sparsity of user-
item interactions in this dataset, which makes item clustering less
stable or meaningful. In such cases, restricting clustering to users
helps preserve more complete interaction histories and avoids over-
fragmentation of the data. Nonetheless, our model still consistently
outperforms all baselines, indicating strong robustness and gener-
alizability even in data-scarce environments.

5.4 Training Efficiency (RQ2)

We compare the overall training time and the number of training
epochs on each dataset with the POD baseline. For our method,
the reported training time represents the total duration required to

Table 6: Effect of different fusion methods for sequential
recommendation performance (%) on Amazon Sports

Fusion | HR@5 NDCG@5 HR@10 NDCG@10
Count 5.32 4.29 6.23 4.58
RRF 5.54 447 6.46 477
WRRF(CF) 5.47 4.43 6.39 4.73
WRRF(LLM) 6.01 5.05 6.80 5.30

train all ¢ = 10 local models in parallel under user-only assignment
setting. The early stopping criterion was uniformly set to 5 epochs
across all experiments.

As shown in Tab. 5, our proposed method takes even less training
time compared to the POD baseline, across all domains. The number
of training epochs is reduced by 3 on average, accounting for the
reduced complexity of the interaction patterns within each sub-
community.

Naturally, the training time per epoch is also shorter. These con-
sistent reductions highlight the efficiency of our method in terms of
both scalability and resource utilization, making it a practical choice
for real-world deployment without compromising performance.

5.5 Ablation Study (RQ3)

5.5.1 Effect of the Fusion Strategy. We evaluate four fusion strate-
gies: Count, Reciprocal Rank Fusion (RRF), weighted RRF with
CF-based weights (WRRF(CF)), and weighted RRF with LLM-based
weights (WRRF(LLM)). The Count method aggregates local pre-
dictions by summing item occurrences, while RRF applies rank-
based aggregation. The wRRF variants extend RRF by incorporat-
ing user-specific weights. In wRRF(CF), the weight corresponds

CIKM °25, November 10-14, 2025, Seoul, Republic of Korea

HR@5 NDCG@5
0.057 1 0.0455
0.0450 4
0.056 -
n 0.0445
© 0.055 ®
oo 3 0.0440
£ e
0.054 0.0435
0.0430
0.053 1
™ y T u v 0.0425 + y T y T u
5 10 15 20 25 30 5 10 15 20 25 30
q q
HR@10 NDCG@10
0.067
0.066 - 0.048
o 0.065 %
9 0.064 g 0047
k4 o
z
0.063
0.046
0.062 -
5 10 15 20 25 30 5 10 15 20 25 30
q q

Figure 4: Sequential recommendation performance on Ama-
zon Sports with various number of local models (g).

to the user’s affinity score for each local model computed from
collaborative filtering (CF) embeddings, as described in Sec. 4.3.2.
In contrast, wRRF(LLM) uses the accuracy of each local model for
each user—measured by NDCG@5 on the user’s held-out interac-
tions—as the weight. These accuracy scores are normalized across
local models for each user via a softmax function.

As shown in Tab. 6, wRRF(LLM) achieves the best performance
across all metrics, outperforming both the unweighted RRF and
the CF-weighted variant. The weaker results of wRRF(CF) com-
pared to wRRF(LLM) can be attributed to the representational gap
between CF embeddings and LLM prediction space. CF-derived
affinity scores may not align well with the semantic and generative
reasoning patterns in LLM outputs, leading to suboptimal weight
assignments. By contrast, wRRF(LLM) directly leverages evaluation-
based accuracy signals, ensuring that models with stronger recent
performance for a given user are prioritized in the fusion process.

These findings highlight that, while personalization in fusion
can be beneficial, the source of the weighting signal is crucial. Us-
ing LLM-relevant performance metrics offers a more adaptive and
model-aligned approach than relying solely on external embedding
similarities. Future work could explore hybrid strategies that com-
bine accuracy-based weighting with semantic similarity measures
from LLM representations to further enhance adaptive fusion.

5.5.2 Effect of the Number of Local LLMs. We examine the impact
of the number of local LLMs (q) on recommendation performance.
The reported metrics in this section correspond to the RRF setting.
As illustrated in Fig. 4, all evaluation metrics steadily improve as q
increases, demonstrating the effectiveness of fine-grained user-item
partitioning. By allowing each local model to specialize in a more
homogeneous subset of users and items, the framework captures
collaborative signals more effectively.

However, the improvement rate begins to plateau beyond g = 20,
with only marginal gains observed between g = 25 and q = 30,
aligned with the observations in traditional local models [22]. This

Yujin Jeon, Jooyoung Kim, and Joonseok Lee

diminishing return with a large number of local models implies a
practical upper bound on the benefits of further partitioning.
These findings point to a trade-off between model accuracy
and scalability. While increasing q improves the recommendation
accuracy, the computational and management overhead also grows.
Notably, even with a small number of local models (e.g., ¢ = 5), our
method already yields substantial performance improvements over
the baselines. This balance between efficiency and effectiveness
makes our approach well-suited for scalable real-world deployment.

5.5.3 Effect of k. In Reciprocal Rank Fusion (RRF) and its weighted
variant (wWRRF), the damping constant k determines how much
influence lower-ranked items exert in the final aggregated score.
To assess its impact, we evaluate the sequential recommendation
performance across three Amazon domains (Sports, Beauty, and
Toys), varying k from 0 to 40. In the wRRF setting, the user-specific
weights are derived from collaborative filtering (CF) models.

As illustrated in Fig. 5, increasing k generally leads to a decline in
performance across all metrics and datasets, with the degradation
being most pronounced in early precision metrics such as HR@5
and NDCG@5. RRF consistently outperforms wRRF across most
k values, maintaining stronger and more stable performance. In
contrast, wRRF shows greater sensitivity to the damping constant;
its performance declines more steeply as k increases, particularly
on metrics that emphasize rank position.

These findings reveal a trade-off between adaptivity and robust-
ness. Although wRRF introduces user-specific weighting to enhance
personalization, it appears more vulnerable to noise when the con-
tribution from lower-ranked items is amplified. RRF, in contrast,
provides more consistent performance across a wide range of k
values. Furthermore, the superior results achieved with smaller k
values underscore the importance of accurately ranking top items
in recommendation scenarios. In practice, choosing a small k (e.g.,
0 or 10) offers a favorable balance between ranking precision and
stability.

6 Case Study

We illustrate an example to demonstrate how our L3Rec framework
effectively incorporates collaborative signals into LLM-based pre-
diction in Fig. 6. We focus on User 25 from the Amazon Beauty
dataset, who has interacted with several items, predominantly per-
fume products. The ground truth target, Item 233, is a makeup kit
from the brand Smashbox, which is semantically distinct from the
user’s prior interactions. The baseline model POD fails to retrieve
this item within its top-10 predictions, while our model successfully
identifies this preferred item.

During the local assignment phase, User 25 is assigned to mul-
tiple local communities (1, 3, 4, 5, 6, 8, 9, and 10). Among the
corresponding local LLMs trained for each community, five of
them(My, My, Ms, Mg, Mip) were able to place the target item
within the top 10 predictions. Notably, all of these five local models
also include User 7347, a user who shares a collaborative signal
with User 25 through a common interaction with Item 216. While
User 25 does not exhibit an explicit preference for makeup products,
User 7347’s interaction history shows a strong inclination toward
them. Through this collaborative link, the relevant local models are
able to infer a hidden preference of User 25—capturing relational

Local Large Language Models for Recommendation

Amazon Sports

Amazon Beauty

CIKM 25, November 10-14, 2025, Seoul, Republic of Korea

Amazon Toys

HR@5 HR@10 HR@5 HR@10
8 0.07675
0.066 1% 0.072
0.055 0.064 \ 0.083 0.07650
0085 - 0.071 0.07625
. 0.063 \ ks
0.054 0088 \ 0082 0.07600
» o070 0.07575
- 0.062 .- 0.081 -
0.053 *—a 0.063 . .
k k k k
NDCG@5

0.0445 0.0475
0.049

0.0440 0.0470

0.0435 0.0465 0.048
0.0460
0.0430

~u

0.0455 0.047

0.063
0.055 { 0.064
0.062
0.063

0.054 0.061

0.062

0.053 4 0.060

Figure 5: Effect of the damping constant k on sequential recommendation performance. Lower values of k give more weight to

top-ranked items.

Shared Item

| VERSACE

User Y
25

el

7

Item 214: Perfume
Versace Bright

Women, 3 Ounce

Item 215: Perfume
Lolita Lempicka By
Lolita Lempicka
for Women. Eau De
Parfum Spray 3.4 Oz.

Item 216: Perfume
Lady Gaga Fame
Eau De Parfum
Spray for Women,

1.7 Ounce

Item 229: Perfume
Guilty by Gueci
for Women, Eau

de Toilette Spray,
2.5 Ounce

Item 10919: Makeup
MAC Amplified
Creme Lipstick

~Saint Germain~ NIB

Item 6332: Makeup
MAC Eye Kohl Smolder
Eye Liner for Women,
0.048 Ounce

7

Item 216: Perfume

Lady Gaga Fame Eau

De Parfum Spray for
Women, 1.7 Ounce

Item 233: Makeup
Smashbox Try It Kit

Local Is User Included? Local Prediction : Affinity
Weight of
LLMs User 25 User 7347 Hit/Miss . Rank yj¢er 25
My v v Hit 1 0.26
M3 N X Miss - 0.08
Item 233: Makeup M N4 v Hit 2 0.49
Smashbox Try It Kit 4 .
M v v Hit 8 0.07
Ground Truth
Mg v X Miss - 0.08
~
1 I
I 5
: Mg Hit 1 0.22
: My v X Miss - 0.21
: My v v Hit 7 0.03
| [Item 489: Makeup
I NYX Cosmetics Long Fusion Method Count RRF | WRRF
| Lasting Slim Lip Liner
Pencils 6 Colors Rank of Target (Item 233) 5 3 2

N—

Figure 6: Case study of User 25 from Amazon Beauty dataset.

signals that are not apparent from content similarity alone with
the help of smaller local community setting.

Furthermore, our proposed aggregation strategy enhances the
final ranking of the target item. As shown in the table in Fig. 6, the
rankings of Item 233 vary across local models, where M1, My, and
Mg ranked the highest with 1st, 2nd, and 1st, respectively. When
using a simple count-based aggregation, the item is ranked only in
the 5th position in the final prediction. In contrast, our rank-based
strategies elevate the item into the top 3. Specifically in this case,
the wRRF strategy predicts the target item with the highest rank,
owing to the high user-affinity weight values assigned to the local
models that assign the highest ranks to the target item.

This case highlights how our framework leverages collaborative
signals in forming local communities, enabling the model to capture
user—item relationships that are not apparent through semantic
similarity alone. By aggregating insights from users with overlap-
ping behavioral patterns, our method can successfully predict items
that lie outside the immediate semantic space of a user’s history.

7 Conclusion

In this work, we present a novel framework for recommendation
using Local Large Language Models (LLMs), addressing the scala-
bility and inefficiency challenges of existing generative LLM-based
recommenders. By partitioning the interaction space into groups of
similar users and items using a collaborative filtering backbone, we
enable the training of local LLMs that better capture fine-grained
collaborative signals within each group. This design not only allows
for parallelized and faster training but also enhances recommenda-
tion quality by focusing each model on a more homogeneous subset
of the data. Our experimental results highlight the potential of hy-
brid architectures that combine traditional recommendation tech-
niques with the generative capabilities of LLMs. Future directions
include exploring dynamic clustering strategies, adaptive fusion
methods, and extending the framework to support more diverse
recommendation scenarios such as multi-modal or conversational
recommendation.

CIKM °25, November 10-14, 2025, Seoul, Republic of Korea

Acknowledgments

This work was supported by Samsung Electronics (10240512-09881-
01), Youlchon Foundation, NRF grants (RS-2021-NR05515, RS-2024-
00336576, RS-2023-0022663) and IITP grants (RS-2022-11220264, RS-
2024-00353131) by the government of Korea.

GenAl Usage Disclosure

ChatGPT was utilized exclusively for grammatical corrections and
enhancing the fluency of the writing. We did not use generative Al
tools for any other purposes.

References
[

Arkadeep Acharya, Brijraj Singh, and Naoyuki Onoe. 2023. LIm based generation
of item-description for recommendation system.

[2] Kegqin Bao, Jizhi Zhang, Wenjie Wang, Yang Zhang, Zhengyi Yang, Yanchen
Luo, Chong Chen, Fuli Feng, and Qi Tian. 2025. A bi-step grounding paradigm
for large language models in recommendation systems. ACM Transactions on
Recommender Systems 3, 4 (2025), 1-27.

[3] Keqin Bao, Jizhi Zhang, Yang Zhang, Wenjie Wang, Fuli Feng, and Xiangnan He.
2023. Tallrec: An effective and efficient tuning framework to align large language
model with recommendation.

[4] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al.
2016. Wide & deep learning for recommender systems. In Workshop on deep
learning for recommender systems.

[5] Minjin Choi, Yoonki Jeong, Joonseok Lee, and Jongwuk Lee. 2021. Local collabo-
rative autoencoders. In WSDM.

[6] Evangelia Christakopoulou and George Karypis. 2018. Local latent space models
for top-n recommendation. In KDD.

[7] Shijie Geng, Shuchang Liu, Zuohui Fu, Yinggiang Ge, and Yongfeng Zhang. 2022.
Recommendation as language processing (rlp): A unified pretrain, personalized
prompt & predict paradigm (p5).

[8] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In WWW.

[9] Balazs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
2015. Session-based recommendations with recurrent neural networks.
arXiv:1511.06939 (2015).

[10] Yupeng Hou, Zhankui He, Julian McAuley, and Wayne Xin Zhao. 2023. Learning
vector-quantized item representation for transferable sequential recommenders.
In wWw.

[11] Yupeng Hou, Shanlei Mu, Wayne Xin Zhao, Yaliang Li, Bolin Ding, and Ji-Rong

Wen. 2022. Towards universal sequence representation learning for recommender

systems. In KDD. 585-593.

Yupeng Hou, Junjie Zhang, Zihan Lin, Hongyu Lu, Ruobing Xie, Julian McAuley,

and Wayne Xin Zhao. 2024. Large language models are zero-shot rankers for

recommender systems. In European Conference on Information Retrieval.

[13] Wenyue Hua, Shuyuan Xu, Yinggiang Ge, and Yongfeng Zhang. 2023. How to

index item ids for recommendation foundation models. In Proc. of the Annual

International ACM SIGIR Conference on Research and Development in Information

Retrieval in the Asia Pacific Region.

[12

[14] Wang-Cheng Kang and Julian McAuley. 2018. Self-attentive sequential recom-
mendation. In IEEE international conference on data mining (ICDM).
[15] Chanwoo Kim, Jinkyu Sung, Yebonn Han, and Joonseok Lee. 2025. Graph Spectral

Filtering with Chebyshev Interpolation for Recommendation. In SIGIR.

[16] Eungi Kim, Chanwoo Kim, Kwangeun Yeo, Jinri Kim, Yujin Jeon, Sewon Lee, and

Joonseok Lee. 2025. ReducedGCN: learning to adapt graph convolution for top-N

recommendation. In PAKDD.

Sein Kim, Hongseok Kang, Seungyoon Choi, Donghyun Kim, Minchul Yang, and

Chanyoung Park. 2024. Large Language Models meet Collaborative Filtering: An

Efficient All-round LLM-based Recommender System. In KDD.

[18] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-
niques for recommender systems. Computer 42, 8 (2009), 30-37.

[19] Joonseok Lee, Samy Bengio, Seungyeon Kim, Guy Lebanon, and Yoram Singer.
2014. Local collaborative ranking. In WWW.

[20] Joonseok Lee, Seungyeon Kim, Guy Lebanon, and Yoram Singer. 2013. Local
low-rank matrix approximation. In ICML.

[21] Joonseok Lee, Seungyeon Kim, Guy Lebanon, and Yoram Singer. 2013. Matrix
approximation under local low-rank assumption.

[22] Joonseok Lee, Seungyeon Kim, Guy Lebanon, Yoram Singer, and Samy Bengio.

2016. LLORMA: Local low-rank matrix approximation. Journal of Machine

Learning Research 17, 15 (2016), 1-24.

Joonseok Lee, Mingxuan Sun, Seungyeon Kim, and Guy Lebanon. 2012. Automatic

feature induction for stagewise collaborative filtering. In NIPS.

(17

[23

Yujin Jeon, Jooyoung Kim, and Joonseok Lee

[24] Lei Li, Yongfeng Zhang, and Li Chen. 2023. Prompt distillation for efficient

llm-based recommendation. In CIKM.

Dawen Liang, Rahul G Krishnan, Matthew D Hoffman, and Tony Jebara. 2018.
Variational autoencoders for collaborative filtering. In WWW.

Jiayi Liao, Sihang Li, Zhengyi Yang, Jiancan Wu, Yancheng Yuan, and Xiang Wang.
2023. Llara: Aligning large language models with sequential recommenders. CoRR
(2023).

Junling Liu, Chao Liu, Peilin Zhou, Renjie Lv, Kang Zhou, and Yan Zhang. 2023.
Is chatgpt a good recommender? a preliminary study. arXiv:2304.10149 (2023).
Junling Liu, Chao Liu, Peilin Zhou, Qichen Ye, Dading Chong, Kang Zhou, Yuegi
Xie, Yuwei Cao, Shoujin Wang, Chenyu You, et al. 2023. Llmrec: Benchmarking
large language models on recommendation task. arXiv:2308.12241 (2023).
Zhongzhou Liu, Hao Zhang, Kuicai Dong, and Yuan Fang. 2024. Collaborative
Cross-modal Fusion with Large Language Model for Recommendation. In CIKM.
Sichun Luo, Yuxuan Yao, Bowei He, Yinya Huang, Aojun Zhou, Xinyi Zhang,
Yuanzhang Xiao, Mingjie Zhan, and Linqi Song. 2024. Integrating large language
models into recommendation via mutual augmentation and adaptive aggregation.
arXiv:2401.13870 (2024).

Yucong Luo, Qitao Qin, Hao Zhang, Mingyue Cheng, Ruiran Yan, Kefan Wang,
and Jie Ouyang. 2024. Molar: Multimodal LLMs with Collaborative Filtering
Alignment for Enhanced Sequential Recommendation. arXiv:2412.18176 (2024).
Hanjia Lyu, Song Jiang, Hanqing Zeng, Yinglong Xia, Qifan Wang, Si Zhang, Ren
Chen, Christopher Leung, Jiajie Tang, and Jiebo Luo. 2023. LLM-rec: Personalized
recommendation via prompting large language models. arXiv:2307.15780 (2023).
Chen Ma, Peng Kang, and Xue Liu. 2019. Hierarchical gating networks for
sequential recommendation. In KDD.

Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel.
2015. Image-based recommendations on styles and substitutes. In SIGIR.

Xia Ning and George Karypis. 2011. Slim: Sparse linear methods for top-n
recommender systems. In ICDM.

Aleksandr V Petrov and Craig Macdonald. 2023. Generative sequential recom-
mendation with gptrec. arXiv:2306.11114 (2023).

Haohao Qu, Wengqi Fan, Zihuai Zhao, and Qing Li. 2024. Tokenrec: learning to
tokenize id for llm-based generative recommendation. arXiv:2406.10450 (2024).
Shashank Rajput, Nikhil Mehta, Anima Singh, Raghunandan Hulikal Keshavan,
Trung Vu, Lukasz Heldt, Lichan Hong, Yi Tay, Vinh Tran, Jonah Samost, et al.
2023. Recommender systems with generative retrieval. In NeurIPS.

Xubin Ren, Wei Wei, Lianghao Xia, Lixin Su, Suqi Cheng, Junfeng Wang, Dawei
Yin, and Chao Huang. 2024. Representation learning with large language models
for recommendation. In WWW.

Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2012. BPR: Bayesian personalized ranking from implicit feedback. arXiv:1205.2618
(2012).

Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. 2001. Item-based
collaborative filtering recommendation algorithms. In Proceedings of the 10th
international conference on World Wide Web. 285-295.

Anima Singh, Trung Vu, Nikhil Mehta, Raghunandan Keshavan, Maheswaran
Sathiamoorthy, Yilin Zheng, Lichan Hong, Lukasz Heldt, Li Wei, Devansh Tandon,
et al. 2024. Better generalization with semantic ids: A case study in ranking for
recommendations.

Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang.
2019. BERT4Rec: Sequential recommendation with bidirectional encoder repre-
sentations from transformer. In CIKM.

Jiaxi Tang and Ke Wang. 2018. Personalized top-n sequential recommendation
via convolutional sequence embedding. In WSDM.

Lei Wang and Ee-Peng Lim. 2023. Zero-shot next-item recommendation using
large pretrained language models. arXiv:2304.03153 (2023).

Wei Wei, Xubin Ren, Jiabin Tang, Qinyong Wang, Lixin Su, Suqi Cheng, Junfeng
Wang, Dawei Yin, and Chao Huang. 2024. LLMRec: Large language models with
graph augmentation for recommendation. In WSDM.

Likang Wu, Zhi Zheng, Zhaopeng Qiu, Hao Wang, Hongchao Gu, Tingjia Shen,
Chuan Qin, Chen Zhu, Hengshu Zhu, Qi Liu, et al. 2024. A survey on large
language models for recommendation. World Wide Web 27, 5 (2024), 60.

Da Yu, Edith Cohen, Badih Ghazi, Yangsibo Huang, Pritish Kamath, Ravi Kumar,
Daogao Liu, and Chiyuan Zhang. 2025. Scaling Embedding Layers in Language
Models. arXiv:2502.01637 (2025).

Tingting Zhang, Pengpeng Zhao, Yanchi Liu, Victor S Sheng, Jiajie Xu, Deqing
Wang, Guanfeng Liu, Xiaofang Zhou, et al. 2019. Feature-level deeper self-
attention network for sequential recommendation.. In IJCAL

Yang Zhang, Fuli Feng, Jizhi Zhang, Keqin Bao, Qifan Wang, and Xiangnan He.
2023. Collm: Integrating collaborative embeddings into large language models
for recommendation. arXiv:2310.19488 (2023).

Zizhuo Zhang and Bang Wang. 2023. Prompt learning for news recommendation.
In SIGIR.

Bowen Zheng, Yupeng Hou, Hongyu Lu, Yu Chen, Wayne Xin Zhao, Ming
Chen, and Ji-Rong Wen. 2024. Adapting large language models by integrating
collaborative semantics for recommendation. In ICDE.

Local Large Language Models for Recommendation CIKM 25, November 10-14, 2025, Seoul, Republic of Korea

[53] Kun Zhou, Hui Wang, Wayne Xin Zhao, Yutao Zhu, Sirui Wang, Fuzheng Zhang, [54] Yaochen Zhu, Liang Wu, Qi Guo, Liangjie Hong, and Jundong Li. 2024. Collabo-
Zhongyuan Wang, and Ji-Rong Wen. 2020. S3-rec: Self-supervised learning for rative large language model for recommender systems. In WWW.
sequential recommendation with mutual information maximization. In CIKM.

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 The Proposed Method
	4.1 Local Community Discovery
	4.2 Training Local LLMs
	4.3 Local Inference and Fusion

	5 Experiments
	5.1 Experimental Settings
	5.2 Baselines
	5.3 Overall Performance (RQ1)
	5.4 Training Efficiency (RQ2)
	5.5 Ablation Study (RQ3)

	6 Case Study
	7 Conclusion
	References

