
Hybrid Diffusions for Stable Molecular Structure Generation
via Explicit Energy-based Model

Youngwoo Cho 1 Seunghoon Yi 2 Soo Kyung Kim 3 4 Hongkee Yoon 1 Joonseok Lee 2 5

Abstract
Generation of 3D molecules utilizing diffusion
models often encounters difficulties in producing
stable structures, primarily due to the emergence
of unstable intermediate structures during diffu-
sion steps. To account for this issue, we introduce
a diffusion-based molecule generation model that
incorporates an energy-based model (EBM), pre-
trained on density functional theory (DFT) data.
Specifically, we propose three strategic use of
EBM: 1) guided exploration using the EBM, 2)
stability evaluation to accept the structure or to
reject and restart the generation at the end of dif-
fusion steps, and 3) performing post-relaxation
refinement. With these three strategies, we demon-
strate that the energy estimator significantly en-
hances the generated molecule’s stability.

1. Introduction
Machine learning has been widely applied to molecule and
crystal structure generation, which is essential for discover-
ing innovative materials endowed with desired properties.
Many strategies have been employed, including generative
adversarial networks (GANs) (Goodfellow et al., 2014), vari-
ational autoencoders (VAEs) (Kingma & Welling, 2014),
and diffusion models (Sohl-Dickstein et al., 2015).

Within this dynamic landscape, we propose a novel approach
that marries the diffusion model with EBM, thereby present-
ing a promising path for generating molecular structures
with enhanced stability. Our approach leverages the power
of diffusion models and further enhances it with an EBM,
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accounting for physical energy in structure generation.

Specifically, we introduce three strategies for utilizing the
EBM as follows:

• EBM-guided exploration: The EBM directly guides
the structure exploration during the diffusion process,
leveraging the energy information it provides. This
approach enhances the stability of the molecules.

• Iterative energy-based assessment of generated
structures: During the generation, we periodically
evaluate the stability of generated structures using their
energy profiles and discard unstable structures.

• Post-relaxation refinement: By performing addi-
tional optimization steps without time constraints,
we enhance the structural stability of the generated
molecules.

These strategies focus on distinct application areas for the
EBM to help the diffusion model. Their effectiveness is
gauged by evaluating the stability of optimized structures, as
determined by DFT calculation. By incorporating DFT, we
validate and demonstrate the effectiveness of our methods
in generating stable and reliable molecular configurations.

2. Preliminary
We first introduce the diffusion probabilistic model and its
application in molecular generation tasks. Subsequently, we
overview energy-based structure relaxation methods.

2.1. Diffusion model

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020; Song et al., 2021a; Song & Ermon, 2019; Song
et al., 2021b) are designed to learn a denoising process,
a kind of Markov chain capable of producing a data sam-
ple x0 from a random Gaussian noise xT . It consists of
two chains, forward and reverse processes. The forward
process q(x1:T |x0) :=

∏T
t=1 q(xt|xt−1), i.e., diffusion pro-

cess, is a Markov chain that transforms a given sample
into the standard normal distribution. Conversely, the re-
verse process p(x0:T ) := p(xT )

∏T
t=1 p(xt−1|xt) where

p(xt−1|xt) := N (xt−1;µ(xt, t),Σ(xt, t)), referred to as
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the denoising process, reconstructs a sample by gradually
removing the small amount of noise from an input random
Gaussian noise. However, since this reverse process is com-
plicated and nontrivial, a neural network pθ(xt−1|xt) is
employed to estimate it. The approximation of the denois-
ing process is achieved by minimizing the KL divergence
between the original input and the recovered sample.

In the context of the molecular domain, the diffusion mod-
els operate on both atomic species and coordinates. This
can be formulated using a graph G(V,E), where V and
E correspond to node (i.e., atomic information) and edge
(i.e., bonding information) features, respectively. Diffusion
models predict the noise that should be removed from each
node and edge feature at a given time step t. Our baseline
model, E(3) equivariant diffusion model (EDM) (Hooge-
boom et al., 2022), aligns with this approach. EDM ap-
plies diffusion and denoising processes on node features
containing atomic coordinates and embedding. In addition,
EDMs employ E(n) equivariant graph neural networks (EG-
NNs) (Satorras et al., 2021) to predict the noise at time step t.
Adaptation of EGNN guarantees equivariance with respect
to the atomic coordinates.

2.2. Energy-based model and structure relaxation

EBMs have been utilized to predict the total energy of
molecules and materials, trained on datasets labeled by DFT
calculations. The study aims to accelerate the exploration
and discovery of stable structures using the diffusion model
by combining the accuracy of DFT calculations and the
speed of machine learning potentials. The stability of gen-
erated molecules is evaluated through DFT-based structure
relaxation, assessing their structural and energy differences
from DFT-optimized structures. Here, we characterize the
quality of generated molecules by the structural (∆P ) and
energy (∆E) differences from DFT-optimized structures,
with smaller values indicating the better stability of gener-
ated molecules following our previous study (Yi et al., 2023).
The results provide valuable insights into the stability and
quality of the generated molecules.

3. Related work
This section introduces the flow of molecular generation
research in three folds.

3.1. Classical method: DFT as a scoring function

Notable codes in this field, such as XtalOpt (Lonie & Zurek,
2011), USPEX (Glass et al., 2006), CALYPSO (Wang et al.,
2012), and AMADEUS (Lee et al., 2016), employ evolu-
tionary algorithms, cluster optimization algorithms, and
conformal space annealing global optimization methods,
respectively. All of these methods rely on massive DFT

calculations, which are computationally intensive as usual.

3.2. GANs and VAEs

To address the inherent limitation of DFT in terms of compu-
tational speed, machine learning techniques have garnered
significant interest in molecular structure generation. Start-
ing from a random noise input with chemical properties,
VAEs (Kingma & Welling, 2014) and GANs (Goodfellow
et al., 2014) are employed to produce a molecular structure,
which has the desired properties. This scheme is commonly
referred to as inverse design (Sanchez-Lengeling & Aspuru-
Guzik, 2018).

Initially, inverse design has focused on generating 1D
or 2D representations of molecules, such as SMILES
strings (Weininger, 1988; Kusner et al., 2017; Gómez-
Bombarelli et al., 2018; Li et al., 2022) or graphs (Jin
et al., 2018; De Cao & Kipf, 2018; Mitton et al., 2020),
and subsequently expanded to produce 3D molecular struc-
tures (Eguchi et al., 2022; Huang et al., 2022; Wang et al.,
2022). VAEs are known to suffer from generating low-
fidelity samples (Xiao et al., 2022), while GANs suffer
from mode collapse (Thanh-Tung & Tran, 2018).

3.3. Diffusion models

EDM (Hoogeboom et al., 2022) employs the diffusion
model to generate molecular structures exhibiting desired
properties. Corso et al. (2023) and Igashov et al. (2022)
address protein docking and binding, to identify molecules
capable of effectively binding to a given protein structure.
Wu et al. (2022) defines simple equation-based potential
and couples them with diffusion models.

4. Method
Our framework consists of two distinct models, an explicit
EBM (i.e., machine learning potential) and the diffusion
model to generate stable molecular structures as shown in
Fig. 1. These two models are trained independently, col-
laborating only during the actual generation of molecular
structures using diffusion.

The EBM serves as a surrogate function that models the
potential energy surface landscapes of molecular structures
based on the positions and species of atoms. On the other
hand, the diffusion model is trained to explore molecules’
conformational space and generate diverse molecular struc-
tures. From the perspective of a score-based approach (Song
& Ermon, 2019; Song et al., 2021b), the diffusion model
assigns an internal score to each molecular conformation.
Here, the internal scores that the diffusion model learns to
predict, can be interpreted as virtual energies rather than
the total energy of a given state. While training the models,
molecular structures along with their corresponding energy
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information are utilized.

Our objective is to investigate the advantages of integrating
the explicit EBM into the diffusion model over solely fo-
cusing on enhancing each model independently. Thus, we
explore three approaches to improve the diffusion model by
leveraging the EBM, described in the following subsections.

Diffusion steps (t) →

1. EBM-guided
exploration

3. Post
relaxation
with EBM

2. Stability evaluation:
Final regulation with EBM

Hybrid Diffusion:
Explicit EBM + Diffusion model

Figure 1. Schematic of the diffusion model combined with an
energy-based model. EBM intervenes during and after the diffu-
sion process in three aspects. These three approaches using EBM
contribute to generating and validating more stable molecular struc-
tures.

4.1. Guided exploration: Incorporating energy-based
model into diffusion process

First, we may direct the diffusion process by conducting
relaxation using the EBM. Specifically, energy-based struc-
ture relaxation steps are intermittently inserted between the
diffusion steps to guide the model to output a stable molec-
ular structure. We selectively use the EBM intervention to
minimize disruptions during the update of atomic elements
within the structure, reducing the risk of the process falling
into local energy minima with fixed species. This approach
leverages the EBM’s ability to explore the conformational
space, enhancing the stability of the molecular structures
generated through diffusion.

4.2. Stability evaluation: Energy-based assessment of
generated structures

At the end of each diffusion process, a decision-making
process is employed to determine whether to accept the gen-
erated molecule or to restart the generation process again. A
few previous models (Hoogeboom et al., 2022) have incorpo-
rated chemical intuition, leading to reasonable performance
for organic molecules composed of majorly C, H, O, and
N atoms. However, such approaches are hardly applicable
to arbitrary molecules, bulk crystals, transition metals, or
other complex systems.

We evaluate the stability of EBM-guided optimized struc-
tures based on criteria such as; 1) minimal structural changes
during relaxation, 2) monotonic energy decrease, and 3) rea-

Exp. # Heuristics Guided Final Post (σ1
∆E , σ2

∆E ) (σ1
∆P , σ2

∆P )
reg. explore. reg. relax.

Base
√

(9.7, 1.7) (8.3, 0.8)

1 (11.3, 1.9) (8.1, 0.7)
2

√
(12.6, 2.2) (7.0, 0.6)

3
√ √

(3.8, 1.6) (4.3, 0.6)
4

√ √ √
(2.5, 0.4) (4.5, 0.5)

Table 1. Comparison with baseline models for energy deviations
(σ1

∆E , σ2
∆E) and average distortion (σ1

∆P , σ2
∆P ) after structure

optimization by DFT. (σ1, σ2) indicates the two width components
of the double Gaussian fit shown in Fig. 3(f, g). Lower is better
for all metrics. We report σ∆E in eV and σ∆P in Å. Note that our
baseline utilizes heuristics regularization, which naively checks
bond types (e.g., C-H bond should be a single bond) based on the
bond length.

sonably short optimization time. This allows us to determine
whether to retry the diffusion process, preventing prema-
ture termination of the generation process and encouraging
further attempts to refine unstable structures.

4.3. Post-relaxation refinement

The diffusion model utilizes an implicit score to generate
structurally plausible molecules, which may approximate
the energetic minima but does not guarantee it. An EBM
may be employed to perform relaxation tasks starting from
the generated structure to further enhance the stability of
the generated molecular structures. Similar to the earlier
approach, we utilize the force, which is the derivative of
the energy with respect to position, to apply the BFGS
method (Liu & Nocedal, 1989) allowing a large number of
optimization steps. This approach provides a straightforward
improvement, depending upon the accuracy of the EBM.

5. Experiments and Results
We conduct experiments to answer the following questions:
Q1. How stable are the molecules generated by the baseline
model using DFT? Q2. How much do the three proposed
adaptations of the EBM contribute to generating more stable
structures?

5.1. Experimental setups

Datasets. We use a publicly available QM9 dataset (Rud-
digkeit et al., 2012; Ramakrishnan et al., 2014), which con-
sists of optimal structures of 130,000 molecules containing
species with up to 9 heavy atoms of (C, O, N, and F) out of
the GDB-17 (Ruddigkeit et al., 2012) database.

Baselines. We compare our model to EDM (Hooge-
boom et al., 2022). For our experiments, we adopt the
EDM (Hoogeboom et al., 2022) as our backbone for the
diffusion model and utilize SpookyNet (Unke et al., 2021)
for the energy-based model. In the case of EDM, the model
is trained from scratch with the default hyperparameters,
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and we used pretrained parameters for SpookyNet1. Since
our method is orthogonal to the training procedure, there
was no finetuning on both models before and during the
generation.

Stability comparison through DFT-based structural op-
timization. We have generated over 500 molecules with
lengths ranging from 7 to 27 atoms and evaluated them
through structural optimization using DFT. This allows us
to determine whether a visually plausible structure actually
corresponds to stable conformations. Additionally, we in-
vestigate the structural distortion of unstable structures by
measuring the deviations in total energy (∆EDFT ) and po-
sitional (∆PDFT ) before and after relaxation, following the
concept introduced by Yi et al. (2023). In detail, ∆PDFT

is defined as the average distance of each atom’s distortion
from the DFT-relaxed structure in the initially generated
structure.

5.2. Evaluation of the baseline

Exp: Baseline Relax with EBM Relax with DFT(a) (b) (c)

E D
FT
(e
V
)

(d) (e) (f)

(g)

-1

-2

-3

-4

-5

-6

0

-4-6 0-2
EML (eV)

Figure 2. (a,d) Examples of molecules generated by the baseline
model. (b,e) Relaxed structure by the EBM. (c,f) Relaxed struc-
tures by DFT. (g) Distribution of ∆EDFT and ∆EEBM obtained
by relaxing multiple samples from the baseline model. Smaller
values of ∆EDFT indicate stabler molecules are generated by the
baseline model. Linearity between ∆EDFT and ∆EEBM reflects
the accuracy of EBM. The discrepancy in EBM from DFT leads
to generating unstable structures, but this can be alleviated by
adopting a more accurate model in the future.

We utilize DFT and EBM to evaluate the stability of gen-
erated molecules from the baseline model and estimate the
EBM quality. Fig. 2(a) shows that, while most positions are
stable, the C-O-C atoms segment forms a separate C-O-C
bond in addition to the C-C bond. By optimizing it using the
EBM, Fig. 2(a) transforms into Fig. 2(b). The C-C distance
increases, resulting in a more plausible molecule without
direct bonding. Additionally, it is evident that Fig. 2(c),
obtained through DFT relaxation, resembles Fig. 2(b).

Fig. 2(d-f) shows the relaxation results for a slightly larger
molecule. The EBM relaxation successfully recovers im-
proper C-O and C-H bonding lengths in Fig. 2(e). We gen-
erally observe reasonable concordance when comparing the

1Source code and pretrained parameter we used in our experi-
ments are available at https://github.com/OUnke/SpookyNet and
https://github.com/ehoogeboom/e3 diffusion for molecules.

EBM and DFT optimization results. However, slight devia-
tions are observed in the EBM model, such as the O-H angle
at the top of Fig. 2(f).

In Fig. 2(g), we illustrate a more extensive set of molecules,
each one subjected to relaxation through both EBM and
DFT. A lower ∆EDFT signifies that the diffusion model
has generated more stable molecules. In general, the linear
relationship between ∆EDFT and ∆EEBM implies the ac-
curacy of EBM. However, it also reveals the presence of
substantial outliers, indicating both the resemblance and
divergence between our employed EBM and the actual DFT
results. Despite the observed deviations, the results sug-
gest that EBM may adequately detect and rectify unstable
structures.

5.3. Collaborative stable diffusion with energy-based
model
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Figure 3. (a-e) 2D normalized histograms of ∆PDFT and ∆EDFT

for each experiments in Tab. 1. Concentrated distribution on the
top-left ∆PDFT and ∆EDFT indicates better structural stability. (f-g)
1D normalized histograms for ∆PDFT and ∆EDFT for experiments
in (a-e), respectively. The dashed lines are fitted using a double
Gaussian model on a logarithmic scale. Note that the range of
typical carbon bonding is 1.2 to 1.5 Å, and the energy scale of
room temperature is about 25 meV.

We use the diffusion model and EBM to generate molecules
using three distinct approaches. Since the diffusion model
relies on probabilistic generation, we sample multiple
molecules of varying sizes, enabling us to examine the over-
all impact through diverse samples. We incrementally add
each idea in the order of the expected impact, namely, EBM-
guided exploration, stability evaluation after diffusion, and
post-relaxation refinement.
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EBM-guided exploration. The energy calculated through
the EBM and the derived forces assists in the position up-
dates of atoms during the diffusion process. Here, one may
consider the direct use of DFT in this update procedure.
However, because of the substantial computational cost of
DFT, leveraging EBM accelerates the process by approx-
imately 100 to 1,000 times when generating a number of
molecules. In practice, guiding based on DFT instead of
EBM requires computation time ranging from a few minutes
to a day depending on the size of the molecules, whereas
EBM typically necessitates only a few seconds.

In our setup, we apply an intervention after 80% of the
total diffusion steps have been completed, performing a
maximum of 30 iterations of BFGS optimization at each
EBM-assisting stage. This approach is designed to balance
speed with the need to avoid the risk of settling into lo-
cal minima, a potential issue if the BFGS optimization is
applied too frequently.

With respect to the number of BFGS iterations, our experi-
ments demonstrated little advantage in exceeding 20 steps.
Extended iteration sequences consume more time and could
obstruct the diffusion process, particularly the updating of
element types, possibly leading to undesirable local min-
ima. Given this, we observed a comparable performance
between 20 and 50 iterations, and chose 30 iterations as a
compromise between optimization efficacy and computa-
tional efficiency. It’s worth noting that the diffusion process
simultaneously updates the elements’ types and positions.
Therefore, early interference in this process with the aim of
optimizing positions for specific elements based on energy
could inadvertently prompt the system to settle in local min-
ima. Our experiments show that introducing interventions
between 70-90% of the diffusion steps has no significant
impact, but initiating interventions prior to the 50% stage
can, surprisingly, generate unnatural molecules.

Fig. 3(c) shows the results with a more confined distribution
of ∆EDFT and ∆PDFT within a smaller area than the base-
line model of Fig. 3(a). Nevertheless, there are instances
where both ∆EDFT and ∆PDFT remain significant. This
can be attributed to the fact that we do not always proceed
with complete relaxation using EBM. The rationale behind
not fully relaxing is two-folds: firstly, we aim to update
only the unstable parts within the given species and posi-
tions using EBM, and secondly, we strive to prevent the
system from falling into local minima, which can occur if
we overemphasize position optimization at the expense of
updating the species.

Evaluating stability after diffusion. While we generally
expect stable molecular structures to emerge from a com-
plete diffusion process, it’s worth noting that this might not
always hold true. In such instances, we employ two criteria
to decide whether to accept the molecule as the final out-

come or restart the diffusion process from the beginning.
Our decision-making hinges on two main criteria. The first
assesses whether the energy monotonically decreases when
we optimize a generated molecule using EBM. The non-
monotonic decrease might indicate the presence of more
stable structures beyond an activation barrier, suggesting
the molecule has not reached sufficient stability. The second
criterion pertains to the energy difference before and after
optimization. We accept only these molecules where the
energy difference is not significantly large. We specifically
set the threshold at 25 meV/atom (corresponding to room
temperature, 300 K), in anticipation that the molecule would
likely maintain stability at room temperature. Fig. 3(d) illus-
trates the results of this decision-making process, showing
that the molecules generated through this iterative approach
exhibit a significantly lower number and degree of outliers in
∆EDFT and ∆PDFT . This demonstrates the effectiveness
of the decision-making mechanism in guiding the generation
of more stable molecular structures. Given our approach’s
reliance on EBM over chemical intuition, this approach may
be extended to all types of molecules and crystal structures.

Post-relaxation refinement. We optimize the final structure
using the EBM with the results obtained from the two tech-
niques above. Unlike previous steps, no time constraint is
imposed on the optimization time step, allowing the system
to relax fully. As depicted in Fig. 3(e), this process even
further reduces the distribution of ∆P and ∆E. Further
improvements in the EBM’s accuracy and extrapolability
could yield even better outcomes. Nonetheless, even in its
current state, significant improvements have been observed.

6. Conclusion
By integrating the diffusion model with EBM, we have suc-
cessfully improved the stability of the structures generated
from the diffusion model. Exploiting the EBM in guided
exploration and post-relaxation enhances the stability of the
emerging structures. Looking ahead, future improvements
to the phase space coverage and accuracy of the EBM are
expected to generate even more stable molecules. Conse-
quently, this advancement would enhance the screening pro-
cess, paving the way for more robust and reliable molecular
and crystal structure generation.
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Broader impact
Integrating an explicit energy-based model (EBM) with a
diffusion model presents a promising direction for generat-
ing more stable molecular structures. This hybrid methodol-
ogy is expected to increase the stability of machine learning-
predicted molecules, thereby enhancing their likelihood of
being realized through actual synthesis. The discovery of
novel molecular structures with unique properties and func-
tions, catalyzing advancements in various scientific and tech-
nological domains such as drug design, materials science,
catalysis, and electronics, will be facilitated. In addition,
this convergence of EBM and diffusion models not only
contributes to the overall advancement of computational
materials research but also offers a viable strategy for solv-
ing natural science problems where energy is well-defined.
Consequently, our proposed method holds the potential to
revolutionize molecule design and discovery, paving the
way for scientific breakthroughs and innovations.
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