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ABSTRACT

While backpropagation (BP) has achieved widespread success in deep learning, it
faces two prominent challenges: computational inefficiency and biological implau-
sibility. In response to these challenges, local supervision, encompassing Local
Learning (LL) and Forward Learning (FL), has emerged as a promising research
direction. LL employs module-wise BP to achieve competitive results yet relies on
module-wise auxiliary networks, which increase memory and parameter demands.
Conversely, FL updates layer weights without BP and auxiliary networks but falls
short of BP’s performance. This paper proposes a simple yet effective objective
within a contrastive learning framework for local supervision without auxiliary
networks. Given the insight that the existing contrastive learning framework for
local supervision is susceptible to task-irrelevant information without auxiliary
networks, we present DICTIONARY CONTRASTIVE LEARNING (DCL) that opti-
mizes the similarity between local features and label embeddings. Our method
using static label embeddings yields substantial performance improvements in the
FL scenario, outperforming state-of-the-art FL approaches. Moreover, our method
using adaptive label embeddings closely approaches the performance achieved by
LL while achieving superior memory and parameter efficiency.

1 INTRODUCTION

Backpropagation (BP) (Rumelhart et al., 1986) has been a fundamental tool in deep learning. However,
BP exhibits two inherent limitations. Firstly, the requirement for weight symmetry during forward
and backward passes renders BP biologically implausible (Liao et al., 2016). While the causal
relationship between biological fidelity and the effectiveness of learning algorithms has yet to be
established clearly, numerous deep learning studies have been focused on emulating human biological
and cognitive processes (Fei et al., 2022; Taniguchi et al., 2022). Secondly, forward passes can
initiate only when backward passes are fully completed (backward locking), and the same applies in
reverse (forward locking), which results in computational inefficiencies due to limited parallelization.
Furthermore, because weight gradient computation requires storing local activations of each layer,
memory usage is also inefficient.

In response, several alternatives to BP have been presented. Feedback alignment (FA) (Lillicrap
et al., 2014; 2016) substitutes symmetric feedback weights with fixed random weights. However, it
remains constrained by forward/backward locking. Its successor, Direct Feedback Alignment (DFA)
(Nøkland, 2016), directly propagates error signals to each layer to alleviate backward locking. Yet,
DFA does not resolve the forward locking problem. For this, local supervision leverages local weight
updates by minimizing local losses. Specifically, local learning (LL) (Nøkland & Eidnes, 2019;
Belilovsky et al., 2020) employs local BP with module-wise auxiliary networks, which process local
outputs to align with the targets for local loss computation. Auxiliary networks allow existing LL
to achieve performance comparable to BP, but using them at every module substantially increases
model parameters.
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A newer local supervision approach takes a bold leap by entirely eliminating BP and auxiliary
networks from LL. In this paper, we refer to this method as forward learning (FL). In FL, weight
updates for each layer are guided by layer-specific local losses, avoiding forward/backward locking
issues and leading to substantial improvements in computational efficiency. In the absence of BP
and auxiliary networks, the essential aspect of implementing FL lies in formulating local targets for
loss computation. For instance, the Forward-Forward algorithm (FF) (Hinton, 2022) defines local
targets by overlaying one-hot encoded labels onto images, treating them as individual pixels within
the image. Since the local outputs include the target information, FF-based methods (Ororbia &
Mali, 2023; Lee & Song, 2023) optimize the self-dot product of local outputs for contrastive learning
objectives. However, this makes contrastive learning in the FL scenario susceptible to task-irrelevant
information in the local outputs, resulting in subpar performance compared to BP and LL.

Our investigation suggests that auxiliary networks play a crucial role in mitigating the impact of
task-irrelevant information. In response to the challenges posed by the absence of auxiliary networks,
we propose a straightforward yet effective local contrastive learning objective, DICTIONARY CON-
TRASTIVE LEARNING (DCL), which effectively aligns local outputs with label embedding vectors.
We evaluate two versions of DCL: one employing static label embedding vectors tailored for the FL
scenario and another featuring adaptive label embedding vectors. Remarkably, our static method
significantly outperforms state-of-the-art FL baselines in the FL scenario by discarding task-irrelevant
information more effectively. Moreover, our adaptive method showcases performance on par with
BP and LL while markedly surpassing LL in terms of parameter and memory efficiency. Further
extensive analyses not only support our intuitions and the effectiveness of our method but also unveil
intriguing properties of label embedding vectors.

2 RELATED WORK

2.1 LOCAL LEARNING

The current research trend encompasses two crucial directions in the field of LL. Nøkland & Eidnes
(2019) stands as one of the pioneering studies to illustrate that a non-BP learning algorithm can
surpass the performance of BP. They utilize two distinct local losses, each originating from a separate
auxiliary network pathway. The reconstruction loss measures the L2 distance between the self-
similarity matrix of one-hot encoded labels and the local features, while the label prediction loss
employs cross-entropy, commonly used in both BP and LL’s local layers (Belilovsky et al., 2019;
2020; Pathak et al., 2022). Nøkland & Eidnes (2019) also introduce biologically plausible, BP-free
versions of these losses, i.e., LL-bpf. The reconstruction loss uses a standard deviation operation
instead of a convolutional auxiliary network, and the label prediction loss employs feedback alignment
for weight updates.

In a different vein, Wang et al. (2020) conduct an information theory-based analysis of LL. The
authors investigate the influence of the local loss objective on mutual information metrics: I(h,x)
(between local features and inputs) and I(h, y) (between local features and labels). Compared to
BP, I(h,x) and I(h, y) exhibit more pronounced decreases as the LL’s layers deepen. To mitigate
the loss of I(h,x) during the forward passes, the authors introduce a module-wise reconstruction
loss, which encourages local features to preserve input information. Furthermore, they prove that
minimizing the supervised contrastive loss in Eq. (1) (Khosla et al., 2020) maximizes the lower bound
of I(h, y). Utilizing both contrastive and reconstruction losses leads to significant performance
improvements, although it comes at the cost of increased computational demands stemming from the
module-wise reconstruction loss.

2.2 FORWARD LEARNING

As FL aims to avoid reliance on BP, it limits the use of auxiliary networks, which guide features toward
their targets with local updates by BP. In the absence of these auxiliary networks, the formulation
of local targets becomes crucial. To address this challenge, the Forward Forward Algorithm (FF)
(Hinton, 2022) defines local targets by overlaying one-hot encoded labels onto images, treating them
as individual pixels within the image. Employing Noise Contrastive Estimation (NCE) (Gutmann &
Hyvärinen, 2010), FF optimizes the self-dot product of local features to be above a certain threshold
if the overlaid labels match the images (positive pair). Otherwise (negative pair), local features are
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optimized to be under a certain threshold. Other FF-based approaches follow the same NCE objective
and label overlay, with specialized architecture (PFF) (Ororbia & Mali, 2023) or refined label overlay
technique (SymBa) (Lee & Song, 2023).

Taking a distinct path apart from FF, the cascaded forward algorithm (CaFo) (Zhao et al., 2023)
linearly projects flattened local features to local label prediction. To achieve this without BP, CaFo
freezes the weights of feedforward layers, reserving weight updates solely for the local linear
projection layers. On the other hand, the direct random target projection (DRPT) (Frenkel et al.,
2021) treats one-hot encoded labels as error signals themselves and uses fixed random weights to
propagate the error signals to each layer. As one-hot encoded labels are locally accessible, parameter
updates can occur during each forward pass.
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Figure 1: Comparison of Lfeat with Lcontrast on CIFAR-
10. Both losses employ Eq. (1), but Lfeat utilizes no
auxiliary network, such that fϕ(h) = h. Training de-
tails are available in Appendix J.2.4.

Contrastive learning stands as a power-
ful tool for representation learning, and
its efficacy has also been demonstrated in
the context of LL and FL. InfoPro (Wang
et al., 2020), an LL method, compares lo-
cal features derived from module-wise aux-
iliary networks. In contrast, FF-based ap-
proaches leverage self-dot products of local
features, as the features contain the label
information. In Wang et al. (2020), for a
batch of local outputs h ∈ RC×H×W from
a forward pass layer, the local contrastive
loss is defined as follows:

Lcontrast = − 1∑
i ̸=j 1yi=yj

∑
i ̸=j

[
1yi=yj log

exp
(
a⊤
i aj/τ

)∑N
k=1 1i ̸=k exp

(
a⊤
i ak/τ

)] , ai = fϕ (hi) , (1)

where τ is a temperature hyperparameter, y ∈ {1, ..., Z} is the ground truth label, and fϕ is an
auxiliary network. In Eq. (1), ai and aj are positive features, such that yi = yj . This function
aims to maximize the similarity between positive features while minimizing that between negative
features. When the auxiliary network fϕ is an identity function, this objective represents the FL
scenario. For convenience, we use Lfeat to denote Lcontrast with fϕ(h) = h. Please note that the
primary objective of this article is to enhance the performance with contrastive learning in the absence
of auxiliary networks. To that end, Lfeat can be regarded as the foundational framework that will be
further elaborated upon in the following sections.

Although both FF-based approaches and InfoPro exploit concepts of contrastive learning to formulate
local objectives, the performance of FF-based approaches falls short compared to InfoPro (LL).
Additionally, with precisely the same setup, we compare the performance of Lcontrast and Lfeat and
report the significant performance gap in Figure 1. These findings underscore the significance of
auxiliary networks in local contrastive learning, setting the stage for our goal to develop a local
contrastive learning framework that excels without auxiliary networks.

4 METHODOLOGY

4.1 MOTIVATION

To enhance the model’s performance using local contrastive learning without auxiliary networks,
we commence our method design by examining the role of auxiliary networks. We suggest that the
notable disparity in performance between Lcontrast and Lfeat can be attributed to the presence of the
mutual information I(h, r), where r, referred to as a nuisance, denotes a task-irrelevant variable in
x. Then, given a task-relevant variable y, it follows that I(r, y) = 0 because mutual information I
signifies the amount of information obtained about one random variable by observing another (Achille
& Soatto, 2018). Lfeat maximizes similarity between local features (h+⊤hp), rather than similarity
between h and labels y. Accordingly, maximizing the similarity between local features could also
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Figure 2: Overview of DCL. Every input is detached before a forward pass, ensuring that no layer
propagates error signals backward. The final layer fL receives its error signal from the cross-entropy
loss Lcross. Every other layer receives its error signal from Ldict, which optimizes the similarity
between layer-wise local features and label embedding vectors.

lead to an increase in I(r+, rp), misleading the model to consider task-irrelevant information as
meaningful features.

In this respect, auxiliary networks have the capacity to filter out r, reducing the impact of r in LL
(see Appendix A for more details). However, in FL where auxiliary networks are unavailable, the
influence of r becomes more detrimental and noticeable. This likely explains the subpar performance
of existing contrastive learning in the FL scenario.

4.2 DICTIONARY CONTRASTIVE LOSS

To address the problem with r in FL, we propose a novel objective that directly maximizes the
similarity between h and embedding vectors corresponding to target labels.

Mapping labels to embedding vectors. To obtain label embedding tz from each target label yz ,
we define an embedding mapping function fm. The embedding mapping function fm : N → RCD

is a one-to-one mapping from a label to a CD-dimensional label embedding vector, which can
be directly compared with dense local features. Every label embedding vector t is initialized
as the standard normal random vector, each element of which is i.i.d. random variable sampled
from the standard normal distribution. For Z label classes, we have a label embedding dictionary
DZ = {fm(yz) | yz ∈ {1, ..., Z}}, where fm(yz) = tz .

Local features. We aim to optimize the similarity between label embedding vectors t and local
features h. First of all, because the shapes of local features may vary across different architectures,
we standardize the representation of h. We represent local features at the l-th layer as hl ∈ RCl

h×Kl ,
where Kl is the number of Cl

h dimensional feature vectors. Because Cl
h can differ for each layer l,

we define the label embedding vector dimension CD as maxCl
h. For fully connected layers (FC),

we reshape a flat output vector hflat ∈ RCl
hKl into hl ∈ RCl

h×Kl (See Appendix E for experiments
concerning the optimal selection of K). For convolutional layers, local outputs are feature maps
hl ∈ RCl

h×Hl×Wl , where Cl
h signifies the channel dimension, whereas Hl and Wl denote the feature

maps’ height and width, respectively. We maintain the integrity of the Cl
h-dimensional vectors within

the feature maps by setting Kl = HlWl. To prevent BP across layers, we employ the stop gradient
operator sg[·], such that hl = fl(sg[hl−1]).

Training objective. The weights of the final prediction layer fL are updated through the standard
cross-entropy loss. All other layers fl for l = 1, ..., L − 1 leverage the dictionary contrastive loss
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Ldict to update their weights. For a batch of local features {hn}Nn=1, we minimize the loss:

Ldict = − 1

N

N∑
n=1

[
log

exp(⟨h̄n, t
′

+⟩)∑Z
z=1 exp(⟨h̄n, t

′
z⟩)

]
, t′ ∈ {pooll(tz)| tz ∈ DZ}, (2)

where we define h̄n := 1
K

∑K
k=1 h

k
n

1, ⟨·, ·⟩ denotes the dot product, and the label embedding
vector t+ corresponds to the label of hn. The dimension of local feature vectors may vary across
different layers l. To align the vector dimension of tz ∈ RCD to that of h̄ ∈ RCl

h , we employ the
one-dimensional average pooling pooll : RCD → RCl

h differently for each layer l.

In this paper, we apply static label embedding vectors solely in the FL scenario to address the con-
straint that layer weights and label embedding weights cannot be updated simultaneously. Technically,
this limitation makes our adaptive method partially forward/backward locked, although this locking
is limited in scope and negligible in practice. Nonetheless, for a fair evaluation against other FL
approaches, which are fully forward/backward unlocked, our static method maintains initial label
embedding weights constant throughout the training process, such that tstaticz = sg[tz]. In contrast,
in scenarios not bound by the FL-specific constraint, label embedding vectors are adaptive, updating
their weights at every layer via error signals from Ldict. Figure 2 illustrates the training workflow
using Ldict. We establish that the minimization of Ldict maximizes a lower bound of I(h, y) in
Appendix B.

Comparison with other contrastive objectives. Contrastive objectives based on InfoNCE (Oord
et al., 2018) are known for their sensitivity to the size of negative samples (Khosla et al., 2020;
Radford et al., 2021; Chen et al., 2020). These contrastive objectives, including Lfeat, often utilize
in-batches negative samples and tend to show improved performance with larger batch sizes N (Wang
et al., 2020; Lee et al., 2018). In contrast, the number of negative samples in Ldict corresponds to
Z − 1. Hence, the efficacy of Ldict depends on the number of classes. Empirical results confirm that
a higher number of label classes Z tends to yield more pronounced performance when compared to
using static label embedding vectors. Nevertheless, competitive performance is still achieved even
with fewer classes.

Layer-wise prediction. Minimizing Ldict maximizes the similarity between local features h and
their corresponding label embedding vectors t+, while concurrently minimizing the similarity to
non-corresponding label embedding vectors. Leveraging this property of Ldict, DZ can be employed
for inference without the final linear classifier fL. Predictions can be generated by selecting the target
label with the highest similarity to the feature vectors:

ŷ = argmax
z

⟨h̄, t′z⟩, t′ ∈ {pooll(tz)|tz ∈ DZ}. (3)

Accordingly, prediction is possible at every layer. Furthermore, this allows for a weighted sum of
layer-wise predictions to serve as the global prediction as in Belilovsky et al. (2019); Zhao et al.
(2023). This approach surpasses predictions made solely by fL. Experiments on layer-wise prediction
are available in Appendix C.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUPS

Due to the substantial performance disparities between FL and LL, we conduct separate comparisons.
In the FL scenario, our static method DCL-S, featuring static label embeddings, is evaluated using
simple fully connected (FC) and convolutional (Conv) architectures in line with the FL baselines. For
our adaptive method DCL, we employ the VGG8B (Simonyan & Zisserman, 2015) architecture as
utilized by Nøkland & Eidnes (2019).

1In practice, we opt for 1
K

∑K
k=1⟨h

k
n, t⟩ over ⟨h̄n, t⟩. While both are mathematically equivalent given the

linearity of the dot product, averaging feature vectors first leads to performance degradation due to a greater loss
in floating-point precision.
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Table 1: Test errors and the number of parameters
with convolutional networks. We highlight the
top-performing results in bold and the second-
best results by underlining them. Results marked
with an asterisk (∗) indicate replicated results.

Approach MNIST CIFAR-10 CIFAR-100
Params. Err. Params. Err. Params. Err.

BP 152K 2.63 153K 22.84 1.43M 46.41
CaFo 243K 1.20 243K 32.57 2.4M 59.24

FL DRTP 1.8M 1.48 4.1M 31.04 19.2M ∗65.02
Lfeat 152K 11.55 153K 43.67 1.43M 67.69

DCL-S 152K 3.21 153K 25.86 1.43M 54.21

Table 2: Test errors and the number of parameters
with fully connected networks. The same archi-
tecture is used except for PFF and DRTP.

Approach MNIST CIFAR-10 CIFAR-100
Params. Err. Params. Err. Params. Err.

BP 1.87M 1.29 18.9M 34.73 19.2M 65.94
FF 1.87M 1.36 18.9M 41.00 19.2M ∗95.20
PFF 23.0M 1.34 32.4M ∗50.14 32.7M ∗81.31

FL DRTP 6.3M 4.00 16.5M 51.27 46.4M ∗88.32
SymBa 5.6M 1.42 18.9M 40.91 19.2M 70.72
Lfeat 1.87M 3.13 18.9M 43.29 19.2M 70.67

DCL 1.87M 1.46 18.9M 35.12 19.2M 66.48

Table 3: Test errors across different datasets using the VGG8B architecture employed by Nøkland
& Eidnes (2019). LL-predsim denotes an LL model trained with both prediction (LL-pred) and
similarity-matching loss (LL-sim). LL-bpf, the BP-free version of LL-predsim, also utilizes two local
losses explained in Section 2.1. LL-contrec signifies an LL model trained with both Lcontrast in Eq.
(1) (LL-cont) and image reconstruction loss used by Wang et al. (2020), as explained in Section 2.1.
The top-performing results are highlighted in bold. The second-best results are underlined.

Loss Type Method MNIST F-MNIST CIFAR-10 CIFAR-100 SVHN STL-10
Single Global Loss BP 0.26 4.53 5.99 26.20 2.29 33.08

Two Local Losses
LL-contrec ∗0.65 ∗5.71 ∗9.02 ∗31.35 ∗2.34 ∗29.74
LL-predsim 0.31 4.65 5.58 24.10 1.74 20.51
LL-bpf ∗0.35 ∗5.68 9.02 ∗37.60 ∗2.31 ∗26.12

Single Local Loss
LL-cont ∗0.37 ∗5.92 ∗7.72 ∗31.19 ∗2.29 ∗26.83
LL-pred 0.40 5.66 8.40 29.30 2.12 26.83
LL-sim 0.65 5.12 7.16 32.60 1.89 23.15

Single Local Loss DCL 0.33 5.52 8.64 31.75 2.19 22.87

Experiments with FC and Conv architectures. We compare our method against FL approaches,
including Lfeat, as well as the standard BP. These comparisons are carried out on MNIST (LeCun,
1998), CIFAR-10, and CIFAR-100 (Krizhevsky et al., 2009). We benchmark our method against FL
models: PFF (Ororbia & Mali, 2023), DRTP (Frenkel et al., 2021) FF (Hinton, 2022), and SymBa
(Lee & Song, 2023). Our FC models share the same FC architecture as FF and SymBa for a fair
comparison. We also evaluate against Conv models: DRTP and CaFo (Zhao et al., 2023). Since
DRTP and CaFo use different architectures, we employ a Conv architecture with fewer parameters.
The BP and Lfeat baseline models are trained using the same architectures and hyperparameters as
our models. Details on architectures, datasets, and training setups are provided in Appendix J.

Experiments with the VGG8B architecture. We employ the VGG8B architecture to compare
against LL, BP-free LL (LL-bpf), and BP. Our evaluation encompasses the same datasets employed
by Nøkland & Eidnes (2019): MNIST, CIFAR-10, CIFAR-100, Fashion-MNIST (Xiao et al., 2017),
SVHN (Netzer et al., 2011), and STL-10 (Coates et al., 2011). We use the same batch size, learning
rate, learning rate schedule, and training epochs used by Nøkland & Eidnes (2019). Please refer to
Appendix J for more details.

5.2 MAIN RESULTS

Comparison with FL approaches. We first compare our static method against BP and other FL
approaches. Table 1 and Table 2 report the test error and number of parameters on MNIST, CIFAR-10,
and CIFAR-100. On MNIST, CaFo continues to exhibit the best performance among FL models.
However, our objective outshines other FL approaches for more realistic datasets (CIFAR-10 and
CIFAR-100). Table 1 shows that our Conv model outperforms other FL models significantly despite
having fewer parameters. Our FC models also surpass other FC models on CIFAR-10 and CIFAR-100,
as depicted in Table 2. Furthermore, our method consistently outperforms Lfeat across all datasets.
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Table 4: Comparison of GPU memory usage and model parameters for VGG8B models. Memory
denotes the peak GPU memory consumption measured during single GPU training with a batch size
of 128. ∆θ represents the increase in the number of parameters compared to the BP baseline.

MNIST, F-MNIST CIAFR-10, SVHN CIAFR-100 STL-10
Method ∆θ Memory ∆θ Memory ∆θ Memory ∆θ Memory

BP 0 847 MiB 0 1086 MiB 0 1088 MiB 0 2315 MiB

LL-contrec 1.15M 811 MiB 2.07M 1049 MiB 2.07M 1050 MiB 2.07M 5954 MiB
LL-predsim 9.53M 1038 MiB 9.60M 1291MiB 10.9M 1310 MiB 9.60M 2594 MiB
LL-bpf 3.28M 708 MiB 3.28M 895 MiB 3.28M 897 MiB 3.28M 1851 MiB
LL-cont 918K 695 MiB 1.84M 894 MiB 1.84M 895 MiB 1.84M 1846 MiB
LL-pred 71.8K 682 MiB 143K 870 MiB 1.43M 890 MiB 143K 1826 MiB
LL-sim 9.46M 933 MiB 9.46M 1154 MiB 9.46M 1156 MiB 9.46M 2290 MiB

DCL 5.12K 580 MiB 5.12K 747 MiB 51.2K 751 MiB 5.12K 1589 MiB

Overall, for each architecture type, our method demonstrates superior performance and scalability
compared to other FL methods.

Comparison with LL approaches. We then compare our adaptive method against LL and LL-bpf.
Table 3 exhibits the test error across various datasets. Our methods outperform the BP baselines on the
SVHN and STL-10 datasets. For each dataset, our models exhibit competitive performance against LL
models trained with a single local loss, as indicated in Table 3. While our models generally perform
well, LL-predsim, trained with two local loss functions, still outperforms our method. However,
across all datasets, our models consistently achieve better results than LL-bpf, the BP-free version of
LL-predsim. It is also worth highlighting that auxiliary networks in LL entail a significant increase
in the number of parameters. In contrast, our method introduces much fewer additional parameters:
Z × CD. Table 4 highlights that our methods achieve better memory efficiency over both LL and BP
and need fewer parameters compared to LL.

5.3 FURTHER ANALYSIS AND DISCUSSION
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Figure 3: Task-irrelevant information captured by intermediate layers of VGG8B. (a) Estimates of
I(h,x), (b) Estimates of I(h, y), and (c) Estimates of I(h, r). We train networks to reconstruct
input images x from local features h, employing the train loss as the estimate of I(h,x). Likewise,
we train networks to classify labels y from local features h and utilize the accuracy as the estimate
of I(h, y). I(h,x) − I(h, y) equals to the upper bound of I(h, r) (Wang et al., 2020), but the
substraction yields a negative value because Iest(h,x) < Iest(h, y). To rectify this, we adjust the
scale of the estimated upper bound by adding 1. More details on the mutual information experiments
are available in Appendix J.2.7.

Robustness on task-irrelevant information. To recast our motivation discussed in Section 4.1,
we analyze our objective in comparison to Lfeat and Lcontrast regarding the presence of task-irrelevant
information, as depicted in Figure 3. Table 1 and Table 2 highlight the performance gaps between
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Ldict and Lfeat, especially with convolutional networks. We interpret these differences through
the lens of task-irrelevant information. As our assumption, Figure 3 exhibits that Lfeat encounters
the nuisance problem; that is, there is no reduction of I(h, r) from the baseline. In contrast, Ldict
effectively reduces I(h, r) starting from the fourth layer, ultimately matching the I(h, r) level
achieved by auxiliary networks (Lcontrast), even when label embedding vectors are static. Appendix
J.2.7 presents the methods used for estimating mutual information in detail.
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Figure 4: Performance with different types of dictionaries. DZ is a dictionary of adaptive label
embedding vectors. DN contains static, standard normal random vectors. D⊥ consists of static,
orthogonal vectors. Vectors in both DN and D⊥ have been scaled to match the norm of DZ .

The effectiveness of adaptive embeddings. Figure 4 depicts the effectiveness of adaptive embed-
dings in contrast to static embeddings across CIFAR-10 and CIFAR-100. Models trained with a
dictionary of adaptive label embeddings DZ consistently outperform models trained with a dictionary
of static label embedding vectors, regardless of whether the compared static embeddings are random
(DN ) or orthogonal (D⊥). In particular, the performance gaps for convolutional architectures are
more pronounced on CIFAR-100 than on CIFAR-10.
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Figure 5: Saliency maps. For a label yi, saliency corresponds to the dot product between the k-th
feature vector hk and the embedding vector of yi. The color on the heatmaps represents the level of
saliency. For visualization on the heatmaps, saliency is normalized between 0 and 1.

Explainability with label embeddings. Figure 5 showcases visualizations of the saliency maps
for the two labels with the highest confidence as predicted by the final layer of VGG8B trained on
CIFAR-10. These saliency maps are generated through the dot product between the label embedding
vector and individual local feature vectors, with each local feature vector representing a distinct
region within an image. Regarding the top-1 labels, there is a clear alignment between the saliency
maps and the regions within the input images that are relevant to those particular labels. For example,
the saliency linked to the top-1 label "Horse" precisely matches the horse’s body.

The saliency maps can also provide a convincing explanation for the high confidence of incorrect
labels. In Figure 5, the saliency of the top-2 label "Deer" in the "Horse" image suggests that the model
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is hallucinating an antler, confused by the two trees near the horse’s head. This misinterpretation
occurs because antlers often generate elevated saliency for the "Deer" label, as demonstrated by the
saliency associated with the top-1 label "Deer" in the corresponding "Deer" image. More examples
are available in Appendix K.3.

Figure 6: t-SNE of label embeddings. See
Appendix K.2 for the complete plot.

Semantic properties of adaptive embeddings.
Figure 6 illustrates the semantic relationship between
adaptive label embedding vectors on CIFAR-100,
which comprises 20 super-labels, each encompassing
5 sub-labels. The clustering of these vectors high-
lights their capacity for semantic learning, akin to
their alignment with label-specific salient features in
Figure 5. Embeddings from the same super-labels
tend to cluster together, while those from seman-
tically similar but different super-labels also show
proximity. For example, "forest" is closer to "trees,"
and "chimpanzee" is closer to "people" than to other
embeddings within their super-label groups. Please
refer to Appendix D for additional experiments on
super-labels.
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Figure 7: Relationship between confusion
rates and label embedding similarity. Each
point represents a pair of labels yi and yj .
Please refer to Appendix K.1 for exact values.

Adaptive label embeddings and confusion rates.
Figure 7 captures the correlation between the confu-
sion rates and adaptive label embedding similarity on
CIFAR-10. With the labels yi and yj , the confusion
rate for yi and yj is defined by the average of confij
and confji. Here, confusion confij is the test error
incurred when incorrectly predicting yi as yj .

Figure 7 illustrates that as the confusion rate between
labels increases, the embedding representations of
these labels become more distinct. This suggests that
when the model struggles to discriminate between
two labels, it compensates by dynamically adjusting
the label embedding space to facilitate better label
separation.

Table 5: Projection vs. average pooling.

CIAFR-10 CIAFR-100
Err. Memory Err. Memory

f lP 12.47 753 MiB 36.08 770 MiB

pooll 8.64 747 MiB 31.75 751 MiB

Comparision between average pooling and projection.
We consider a fully connected layer f lP : RCD → RCl

h

as a substitute for the one-dimensional average pool-
ing pooll employed in Eq. (2). The linear projection
layer f lP maps CD-dimensional label embedding vectors
to Cl

h-dimensional label embedding vectors, such that
f lP (tz) = tlz . Table 5 illustrates that pooll outperforms
f lP in performance and memory/parameter efficiency.

6 CONCLUSION

In this paper, we find that the limited efficacy of conventional contrastive learning objectives without
auxiliary networks primarily arises from the inclusion of task-irrelevant information. To address this
challenge, we present a novel objective, DCL, which directly aligns local features with label-specific
embedding vectors. Even without auxiliary networks, our approach effectively discards task-irrelevant
information, outperforming other FL approaches by a large margin. In addition, our method using
adaptive label embedding vectors achieves performance levels comparable to those of BP and LL
while maintaining superior parameter/memory efficiency compared to LL. Further extensive analyses
support our model design and its effectiveness. We aspire for this work to pave a valuable path
forward, positioning DCL as a formidable alternative to BP.
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APPENDIX

A THE EFFECTIVENESS OF AUXILIARY NETWORKS IN DISCARDING
TASK-IRRELEVANT INFORMATION
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Figure I: Information contents of local features from VGG8B models trained with Lcontrast and
Lfeat. (a) Estimates of mutual information between local features and inputs I(h,x). (b) Estimates
of mutual information between local features and labels I(h, y). (c) Estimates of task-irrelevant
information in local features I(h, r). I(h,x) can be estimated by reconstructing x from h. I(h, y)
can be estimated by classifying y from h. We obtain the estimated upper bound of I(h, r) by
subtracting Iest(h, y) from Iest(h,x). The subtraction results in negative values because the values
of Iest(h,x) are smaller. Thus, we adjust the scale by adding 1. Implementation details are available
in Appendix J.2.7.

To demonstrate the effectiveness of auxiliary networks in reducing I(h, r), we compare local features
of VGG8B models trained with Lcontrast and its auxiliary network-free counterpart, Lfeat. Figure
I underlines the pronounced decrease of r in local features when auxiliary networks are employed,
even from early layers.

B DEMONSTRATING THAT MINIMIZATION OF Ldict MAXIMIZES THE LOWER
BOUND OF TASK-RELEVANT INFORMATION

This section demonstrates that minimizing the dictionary contrastive loss,

Ldict = − 1

N

N∑
n=1

[
log

exp⟨hn, t+⟩∑Z
z=1 exp⟨hn, tz⟩

]
, hn :=

1

K

K∑
k=1

hkn, t ∈ DZ , (4)

maximizes a lower bound of I(h, y). We follow the progression of the proof by Wang et al. (2020)
showing that minimizing Lcontrast in Eq. (1) maximizes a lower bound of mutual information
I(h, y) = Eh,y log

p(h,y)
p(h)p(y) .

Suppose that we sample a local feature hn from a set of N local features X = {h1, ...,hN}. Given
that hn corresponds to a label yz , hn also corresponds to a label embedding vector tz because we
have fm(yz) = tz , where the embedding mapping function fm is the one-to-one mapping. We use
t+ to denote such positive label embedding vector. For Z label classes, we have a label embedding
dictionary DZ = t+ ∪Dneg, where DZ = {t1, ..., tZ}.

Then, we have the expectation of Ldict

E[Ldict] = EX

[
− log

exp⟨h, t+⟩∑Z
z=1 exp⟨h, tz⟩

]
. (5)

Minimizing Ldict can be regarded as minimizing a categorical cross-entropy loss of identifying the
positive label embedding vector correctly, given the local feature h. For examples, in Eq. 3, ⟨h, tz⟩
serves as the confidence of classifying h as the label yz . Thus, we can define the optimal probability
P pos(tz|X) representing the true probability of tz being the positive label embedding vector. Because
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the label of h equals to the label of t+ by definition, it can be said that the positive label embedding
vectors are sampled from the true distribution p(t|h), and the negative label embedding vectors are
from the true distribution p(t). Accordingly, we obtain the optimal probability as follows:

P pos(tz|X) =
p(tz|h)Πs ̸=zp(ts)∑Z
j=1 p(tj |h)Πs̸=jp(ts)

=

p(tz|h)
p(tz)∑Z

j=1
p(tj |h)
p(tj)

. (6)

Then, we derive Loptimal
dict by using P pos(t+|X) as the optimal value for exp⟨h,t+⟩∑Z

j=1 exp⟨h,tj⟩
in Eq. (5).

Thus, assuming uniform label distribution of h, we obtain the inequality

E [Ldict ] ≥ E
[
Loptimal

dict

]
= EX

− log

p(t+|h)
p(t+)∑Z

j=1
p(tj |h)
p(tj)

 (7)

= EX

− log

p(t+|h)
p(t+)

p(t+|h)
p(t+) +

∑
tj∈Dneg

p(tj |h)
p(tj)

 (8)

= EX

log

1 + p (t+)

p (t+ | h)
∑

tj∈Dneg

p (tj | h)
p (tj)

 (9)

≈ EX

{
log

[
1 +

p (t+)

p (t+ | h)
(Z − 1)Etj∼p(tj)

p (tj | h)
p (tj)

]}
(10)

= EX,t+

{
log

[
1 +

p (t+)

p (t+ | h)
(Z − 1)

]}
(11)

≥ EX,t+

{
log

[
p (t+)

p (t+ | h)
(Z − 1)

]}
(12)

= −I (h, t+) + log(Z − 1) ≥ −I(h, y) + log(Z − 1). (13)

Eq. (10) is derived from Oord et al. (2018), according to which the approximation becomes more accu-
rate as Z increases. By the definition of mutual information, we have I(h, t+) = EX,t+ log p(t+|h)

p(t+) .
Due to the data processing inequality (Shwartz-Ziv & Tishby, 2017), we have I(h, y) ≥ I(h, t+),
and thereby Eq. (13). Given the derived inequality E [Ldict ] ≥ log(Z − 1)− I(h, y), minimization
of Ldict maximizes a lower bound of I(h, y).

C EXPERIMENTS WITH LAYER-WISE PREDICTION

Table I: Layer-wise test errors for FC and Conv
models on CIFAR-10. Layer 3 correspond to the
final classifier layer.

Layer 1 Layer 2 Layer 3

FC 70.95± 0.25% 34.22± 0.24% 34.62± 0.36%

Conv 48.14± 0.22% 25.42± 0.25% 25.63± 0.31%

Table II: Layer-wise test errors for FC and Conv
models on CIFAR-100. We report average test
errors across 5 runs.

Layer 1 Layer 2 Layer 3

FC 72.82± 0.31% 66.36± 0.15% 65.85± 0.19%

Conv 71.11± 0.21% 50.37± 0.28% 49.78± 0.30%

This section evaluates the performance of layer-wise predictions in models trained with Ldict and
adaptive label embeddings. Initially, we scrutinize the individual layer-wise predictions for the
FC, Conv, and VGG8B architectures. Given the shallow nature of FC and Conv architectures, we
further assess the VGG8B architecture using a weighted sum of layer-wise predictions as the global
prediction.

C.1 METHOD

Models trained with Ldict can generate layer-wise predictions by leveraging Eq. (3), namely

ŷ = argmax
z

⟨h, t′z⟩, t′ ∈ {pooll(tz)|tz ∈ DZ}. (14)
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Suppose that we have a model consisting of L layers {f1, ..., fL}, where fL is the final linear classifier
layer. Then, for l < L, we can obtain a layer-wise embedding vector t′ ∈ {pooll(tz)|tz ∈ DZ}.
By leveraging the similarity ⟨h, t′z⟩ as the confidence of classifying h as the label yi, we obtain
layer-wise prediction by choosing the label with the highest confidence.

C.2 SINGLE PREDICTION
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Figure II: Test errors across layers of the
VGG8B models. The 8-th layer corresponds
to the final linear classifier layer.

Since both FC and Conv architectures consist of three
layers, we present their performance together.

Results for the FC and Conv architectures. Table
I and Table II summarize the performance of layer-
wise predictions. On CIFAR-10, Layer 2 predictions
outperform the predictions from the final classifier
layer for both FC and Conv models.

Results for the VGG8B architecture. Figure II
displays the prediction performance for all layers
of VGG8B. In both datasets, while the final layers
provide the most accurate predictions, those after
Layer 4 are only slightly less accurate than the final
layers.

C.3 WEIGHTED SUM OF LAYER-WISE PREDICTION AS THE GLOBAL PREDICTION
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Figure III: Test errors for global prediction at
different p values. Here, p adjusts the confi-
dence level of each layer, such that λl = lp.
Baselines are derived from the average test
errors of the final classifier layer. The under-
lined values correspond to the baselines.

Weighted sum. For each intermediate layer
l, we can obtain a confidence vector ŷl =
[⟨h t′1⟩ ⟨h, t′2⟩ ... ⟨h, t′Z⟩]⊤. Then, we obtain the
global prediction ȳ as the weighted sum of ŷl across
l, such that ȳ =

∑L−1
l=1 λlŷl, where λl is the coeffi-

cient controlling the influence of ŷl on ȳ. We eval-
uate ȳ by setting λl = lp, such that 0 < p <= 10.
The trained VGG8B models from Section 5.2 are
employed for these global predictions.

Results. Figure III details the global prediction re-
sults for different p values. When p = 1, all layers
contribute equally, leading to a performance drop
compared to the final classifier layer. As p increases,
deeper layers exert greater influence on ȳ. Higher p
values generally enhance predictions above the base-
line, notably on CIFAR-100. Yet, an overwhelm-
ing influence from deeper layers can degrade perfor-
mance, regressing toward the baseline.

D MULTIPLE LABEL EMBEDDINGS PER LABEL

This section delves into a situation where each class has multiple label embeddings. Specifically, we
examine an ideal scenario where the variation within each class label is accurately and specifically
identified. CIFAR-100, composed of 20 super-labels with 5 sub-labels each, serves as our testbed.
Training on CIFAR-100 and performing inference on CIFAR-20 essentially equates to employing
5 unique label embeddings for each super-label. This approach enables us to leverage the exact
knowledge of 5 distinct variations for each label.

Setup. We employ two distinct methods for inference to leverage the hierarchical relationship
between CIFAR-100 and CIFAR-20 labels. The Mean method averages the sub-label embeddings
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within each super-label, creating a unified super-label embedding—for example, averaging embed-
dings of "man," "woman," "boy," "girl," and "baby" to represent "people." During inference, the
model predicts the super-label by identifying which averaged embedding is most similar to the local
features from the last layer h̄L−1, utilizing a similarity metric as outlined in Eq. (3). On the other
hand, Super method predicts the super-label based on the closest proximity of h̄L−1 to any sub-label
embedding within a super-label.

For comparative analysis, we introduce two baseline approaches that utilize conventional feedforward
processes for inference. Naive approach uses the super-label of the predicted sub-label as the final
prediction. We utilize sub-label predictions by the models trained on CIFAR-100 from Section 5.2.
For instance, if the model classifies an image as "baby," the associated super-label "people" is used as
the final prediction. Meanwhile, E2E represents an end-to-end training method, where models are
trained using Ldict on CIFAR-20 super-labels.

Table III: Comparison of
test errors on CIFAR-20.

FC Conv VGG

E2E 56.65 40.72 23.42
Naive 65.85 49.78 31.75

Super 60.95 37.56 21.84
Mean 60.98 48.61 32.26

Results and analysis. Table III indicates that Super achieves the best
performance overall. However, Mean does not exhibit a significant advan-
tage over Naive, even showing a performance decline for the VGG8B
model. This could be attributed to the presence of outlier sub-labels in
CIFAR-100, which can negatively skew the computed mean. For instance,
as depicted in Figure VII, the "forest" sub-label embedding is closer to
the "trees" embedding than to other sub-labels in the "large natural out-
door scenes" category. Consequently, an averaged embedding for "large
natural outdoor scenes" may not effectively represent the nuances of this
super-label.

It is also important to note that the semantic relationships learned by Ldict do not always align with
the dataset’s predefined hierarchy. For example, CIFAR-100 categorizes "chimpanzee" under "large
omnivores and herbivores" alongside "elephant, cattle, camel, and kangaroo." Yet, semantically,
"chimpanzee" aligns more with "people," as reflected in the learned label embeddings in Figure VII.
This observation highlights that models trained with Ldict intuitively grasp the semantic relationships
between labels, while learning a less inherently semantic structure, such as a taxonomy, requires
explicit supervision.
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Figure IV: Performance of FC models with
varying numbers of feature segments K.

Figure IV illustrates how performance varies across
different K values for CIFAR-10 and CIFAR-100. In
our FC layers, we divide a local feature hflat ∈ RCK
into K segments of C-dimensional feature vectors
as mentioned in Section 4.2. For our FC models,
CK = 3072 across all intermediate layers. This
transformation effectively converts the flat feature
into a grid-like feature h ∈ RC×K . Then, Ldict

optimizes the average similarity between label em-
bedding vectors and feature vectors across K seg-
ments. While the optimal number for K may vary
across datasets, it is evident that the segmentation of
features consistently leads to improved performance
compared to the baseline K = 1.

F DCL VARIANTS FOR PARALLEL TRAINING

Setups. DCL, our default approach, updates label embeddings following every intermediate layer’s
forward pass. While our experiments exclusively employ sequential training, we also explore
parallel training scenarios where each layer operates on a distinct GPU in parallel. With DCL, label
embeddings can be updated via layer-wise gradients averaged across all intermediate layers. However,
this averaging, which integrates concurrent error signals from all layers, might negatively impact the
weight updates. Thus, we propose two versions better suited for parallel training. DCL-O updates
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label embeddings exclusively using the error signals from the last intermediate layer. In contrast,
DCL-LD employs layer-wise dictionaries DZ

l = {tz | tz ∈ RCl
D , z ∈ {1, ..., Z}}, allowing for

parallel updates of layer-wise label embeddings.

Table IV: Comparison of DCL variants trained on the VGG8B architecture. Memory denotes the
peak GPU memory consumption measured during single GPU training with a batch size of 128. ∆θ
represents the increase in the number of parameters compared to the BP baseline.

MNIST CIAFR-10 CIAFR-100 STL-10
Method ∆θ Err. Memory ∆θ Err. Memory ∆θ Err. Memory ∆θ Err. Memory

DCL 5.12K 0.33 580 MiB 5.12K 8.64 747 MiB 51.2K 31.75 751 MiB 5.12K 22.87 1589 MiB
DCL-O 5.12K 0.32 580 MiB 5.12K 8.68 747 MiB 51.2K 34.58 751 MiB 5.12K 23.56 1589 MiB
DCL-LD 21.8K 0.34 581 MiB 21.8K 8.45 749 MiB 218K 31.64 766 MiB 21.8K 22.59 1593 MiB

Results. Table IV compares performance and parameter/memory costs for DCL, DCL-O, and
DCL-LD across four datasets: MNIST, CIAFR-10, and CIAFR-100, and STL-10. DCL-LD’s layer-
wise dictionaries might provide advantages in certain contexts, as seen in its competitive error rates
for CIAFR-100 and STL-10, albeit with higher parameter/memory cost. DCL and DCL-O maintain a
balance between efficiency and performance, with DCL-O slightly edging out in error rate reduction
in less complex datasets. The increased parameter count for DCL-LD suggests a trade-off between
representational capacity and resource efficiency, which may be justified by its performance in more
complex tasks.

G EXPERIMENTS WITH OTHER ARCHITECTURES.

Table V: Comparison between Ldict and Lcontrast across various architectures on CIFAR-10.

ResNet-32 ResNet-32-W ViT MLP-Mixer
∆θ Err. Memory ∆θ Err. Memory ∆θ Err. Memory ∆θ Err. Memory

BP 0 6.701 3179 MiB 0 4.781 13433MiB 0 16.25 5300 MiB 0 17.23 6361 MiB
Lcontrast 73.6K 32.71 1617 MiB 266K 20.02 6378 MiB 394K 32.95 1354 MiB 394K 31.67 1468 MiB

Ldict 0.64K 25.19 1617 MiB 2.56K 14.36 5350 MiB 5.12K 32.63 1348 MiB 5.12K 23.51 1445 MiB

We evaluate Ldict against Lcontrast on CIFAR-10 using a range of architectures: ResNet-32 (He
et al., 2016), its wider-channel variant ResNet-32-W, ViT (Dosovitskiy et al., 2020), and MLP-Mixer
(Tolstikhin et al., 2021). These architectures consist of multiple modules, each embodying a functional
unit and containing multiple fully connected or convolutional layers. For instance, a single module
of MLP-Mixer is a combination of channel-mixing and token-mixing layers, so that each module
effectively blends information both channel-wise and token-wise. Our experimental setup applies
Ldict at a module level, incorporating module-wise BP. However, unlike in Lcontrast, we do not
employ module-wise auxiliary networks. Please refer to Appendix J.2.3 for additional information.

Results. Table V demonstrates that Ldict outperforms Lcontrast across various architectures while
requiring fewer parameters and less memory. Although the performance difference for ViT is
marginal, a considerable gap is observed in ResNet-32, ResNet-32-W, and MLP-Mixer.

H THE CHOICE OF SIMILARITY MEASURE

In Figure V, we compare dot product and cosine similarity across different temperature parameter τ .
Although cosine similarity is a commonly employed similarity measure in contrastive learning, it
consistently delivers inferior performance when compared to dot product, irrespective of τ .
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Figure V: Cosine similarity vs. dot product across different architectures. (a) FC, (b) Conv, and
(c) VGG8B. τ denotes the temperature hyperparameter for cosine similarity. Across all tested
architectures and datasets, dot product consistently outperforms cosine similarity.

I IN RELATION TO NEURAL COLLAPSE

Neural Collapse. During the late stages of training, various phenomena collectively known as
neural collapse appear at the layer preceding the final classifier. The most relevant to our study
is the simplification to nearest class center (NCC): the network classifier tends to select the class
whose train class mean is nearest (Papyan et al., 2020). Previous research have identified the gradual
emergence of neural collapse at local layers (Ben-Shaul & Dekel, 2022; Ben-Shaul et al., 2023;
Rangamani et al., 2023). Moreover, it has been shown that inducing NCC in these layers through
specialized local losses can be advantageous (Ben-Shaul & Dekel, 2022; Elsayed et al., 2018).

Regarding our work. By minimizing E[Ldict(h,DZ)], our approach can be seen as encouraging
NCC at local layers by aligning the local class center 1

Nz

∑Nz

n=1 h
z
n with label embedding vectors

tz , akin to the motivation of using local losses by Ben-Shaul & Dekel (2022); Elsayed et al. (2018).
However, Ben-Shaul & Dekel (2022); Elsayed et al. (2018) focus on local features within an end-
to-end BP framework, whereas our work investigates locally decoupled layers, treating each as the
final layer before the classifier. Our results indicate that global feedback, typical of BP, may not be
crucial for neural collapse. In Figure II, we observe the improvement of layer-wise prediction through
layers, consistent with Ben-Shaul et al. (2023). Moreover, in Appendix D, clustering by semantic
similarity, as opposed to predefined taxonomy, mirrors the clustering to semantic labels observed by
encouraging NCC in self-supervised learning (Ben-Shaul et al., 2023).

J IMPLEMENTATION DETAILS

J.1 DATASETS

FC and Conv experiments. For the Conv and FC architectures, we test our method on MNIST
(LeCun, 1998), CIFAR-10, and CIFAR-100 (Krizhevsky et al., 2009) datasets, in Table 2 and Table 1.
The MNIST dataset consists of 60000 training and 10000 test samples, with 10 label classes. Each
sample is a 28× 28 grayscale image. CIFAR-10 and CIFAR-100 provide 50000 training and 10000
testing RGB images of size 32× 32, but with 10 and 100 label classes respectively. All three datasets
maintain uniform label distributions across training and test sets.

VGG8B experiments. In Table 3, employing the VGG8B (Simonyan & Zisserman, 2015; Nøkland
& Eidnes, 2019) architecture, our method was evaluated on datasets including MNIST, Fashion-
MNIST (Xiao et al., 2017), CIFAR-10, CIFAR-100, SVHN (Netzer et al., 2011), and STL-10 (Coates
et al., 2011) datasets. Fashion-MNIST (F-MNIST) has 60,000 training and 10,000 test grayscale
images with 10 label classes. SVHN, with 32× 32 RGB images, comprises 73257 training, 531131
extra training, and 26032 test images. We adopt both training sets, following Nøkland & Eidnes
(2019). STL-10 provides 5,000 training and 8,000 test RGB images (96× 96). Labels of Fashion-
MNIST, CIFAR-10, CIFAR-100, and STL-10 are uniform distributions for training and test samples.
Nøkland & Eidnes (2019) also tested their models on Kuzushiji-MNIST (Clanuwat et al., 2018).
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Because the newer, available version of Kuzushiji-MNIST is different, we exclude Kuzushiji-MNIST
from the experiment.

J.2 TRAINING DETAILS

Table VI: FC and Conv architectures. DCL and BP share the same architectures, except for DZ .
Likewise, DCL, FF (Hinton, 2022), and SymBa (Lee & Song, 2023) share the same FC architectures.
K refers to the feature segments explained in Section E.

FC (MNIST) FC (CIFAR-10) FC (CIFAR-100) Conv Conv (DCL-S CIFAR-100)

DZ 10× 98 10× 64 100× 256 10× 256 (100× 256) 100× 512

K 8 48 12

Input Size 784 3072 3072 3x32x32 3x32x32

Unit 1 fc 1024 fc 3072 fc 3072 conv(3× 3× 64, 1, 1) conv(3× 3× 64, 1, 1)

Unit 2 ReLU ReLU ReLU Batchnorm Batchnorm

Unit 3 Layernorm Layernorm Dropout 0.3 ReLU ReLU

Unit 4 fc 1024 fc 3072 LayerNorm conv(3× 3× 256, 2, 1) conv(3× 3× 256, 2, 1)

Unit 5 ReLU ReLU fc 3072 Batchnorm Batchnorm

Unit 6 Layernorm Layernorm ReLU ReLU ReLU

Unit 7 fc 10 fc 10 Dropout 0.3 Global Avg Pooling conv(3× 3× 512, 2, 1)

Unit 8 Layernorm fc 10 (100) Batchnorm

Unit 9 fc 100 ReLU

Unit 10 Global Avg Pooling

Unit 11 fc 100

Table VII: Hyperparameters for training the FC, Conv, VGG8B architectures.

FC
Dataset Epoch Learning Rate Decay Milestones

MNIST 150 0.0005 50 100 125
CIFAR-10 400 0.0002 50 150 200 350
CIFAR-100 200 0.0001 50 100 150

Conv
Dataset Epoch Learning Rate Decay Milestones

MNIST 150 0.0075 50 75 100 125
CIFAR-10 500 0.0075 100 200 300 400 450
CIFAR-100 400 0.0075 100 200 250 300 350

VGG8B
Dataset Epoch Learning Rate Decay Milestones

MNIST 100 0.0005 50 75 89 94
F-MNIST 200 0.0005 100 150 175 188
CIFAR-10 400 0.0005 200 300 350 375
CIFAR-100 400 0.0005 200 300 350 375
SVHN 100 0.0003 50 75 89 94
STL-10 400 0.0005 200 300 350 375

Our experiments were conducted using Pytorch. Across all architectures, we use the AdamW
optimizer (Loshchilov & Hutter, 2018) with the default Pytorch setting: β1 = 0.9, β2 = 0.999, and
weight_deacy = 0.01. Table VII details the training hyperparameters for every architecture.
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Table VIII: Backbone architecture of VGG8B. All convolution layers utilize 3× 3 kernels, with a
stride and zero-padding set to 1.

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6

Unit 1 conv 128 conv 256 conv 256 conv 512 conv 512 conv 512

Unit 2 Batchnorm Batchnorm Batchnorm Batchnorm Batchnorm Batchnorm

Unit 3 ReLU ReLU ReLU ReLU ReLU ReLU

Unit 4 Dropout Dropout Dropout Dropout Dropout Dropout

Unit 5 Maxpool 2× 2 Maxpool 2× 2 Maxpool 2× 2 Maxpool 2× 2

Dropout Rates across Different Datasets
MNIST F-MNIST CIFAR-10 CIFAR-100 SVHN STL-10

Dropout rate 0.1 0.1 0.05 0.05 0.05 0.1

Table IX: Fully connected layers succeeding the VGG8B backbone. Feature maps from the final
convolutional layers are transformed into feature vectors. The initial dimension of the ”fc” layers
represents the feature vectors’ dimension. Dropout rates are identical to those used in the backbone.

MNIST, F-MNIST CIFIAR-10 (100), SVHN STL-10
Layer 7 Layer 8 Layer 7 Layer 8 Layer 7 Layer 8

Unit 1 fc 512×1024 fc 1024×10 fc 2048×1024 fc 1024×10 (100) fc 4608×1024 fc 1024×10

Unit 2 Batchnorm Batchnorm Batchnorm

Unit 3 Dropout Dropout Dropout

J.2.1 FC AND CONV EXPERIMENTS.

For Table 1 and 2, our models and their BP baselines are trained using the same training hyperparam-
eters. The architecture details are listed in Table VI. All FC and Conv experiments employ a learning
rate decay rate of 0.5 and batch size of 512.

J.2.2 VGG8B EXPERIMENTS.

For Table 3, VGG8B architectures come in three variants, each tailored to a specific input image size,
but they all share the backbone layers listed in Table VIII. Table IX summarizes the variations in
the fully connected heads. For the label embedding dictionary DZ ∈ RZ×CD , where Z equals the
number of label classes, we use CD = 512 across all datasets. For the ”Layer 7” in Table IX, we
segment the output 1024-dimensional vector into 2 segments of 512-dimensional vectors for Ldict in
Eq. (2). A batch size of 128 is used for all experiments.

J.2.3 EXPERIMENTS WITH RESNET, VIT, AND MLPMIXER.

ResNet-32 and ResNet-32-W. ResNet-32 is structured with 15 residual blocks, each containing 2
convolutional layers. These blocks are treated as individual modules. ResNet-32-W is structurally
identical to ResNet-32, with the key distinction being that its channel dimension is four times larger
than that of ResNet-32. Training details of ResNet-32 and ResNet-32-W are in Appendix J.2.6.

ViT. We employ a vision transformer (ViT) containing 6 transformer encoder modules. Each
module includes multi-head attention (MHA) and a multilayer perceptron (MLP), with both MHA
and MLP having two fully connected (FC) layers. ViT’s configuration involves 8 attention heads,
4× 4 image patch size, 512-dimensional tokens, and a single class token.
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In line with the original design of the class token in ViT, we optimize the similarity between label
embedding vectors tz and the class token vector. We use the same CIFAR-10 training hyperparameters
utilized for VGG8B in Table VII.

MLP-Mixer. In our experiments, MLP-Mixer employs 6 modules, each featuring a channel-mixing
and a token-mixing layer. With a 4x4 image patch size on CIFAR-10, each local module processes
64 tokens of 512-dimensional vectors. Training hyperparameters for CIFAR-10 are identical to those
used for VGG8B, as shown in VII.

J.2.4 IMPLEMENTING Lcontrast AND Lfeat.

Training with Lcontrast. We train VGG8B and ResNet-32 models with auxiliary networks for
Figure 1, Figure 3. Table 3, and Appendix A because Lcontrast entails the use of auxiliary networks.

For VGG8B, we used the same auxiliary network architecture and training hyperparameters used by
Nøkland & Eidnes (2019). The model incorporates a layer-wise fully connected auxiliary network,
transforming A-dimensional vectors into 128-dimensional ones. A equals 2048 except for MNIST
and FashionMNIST which use A = 1024. The local feature maps h undergo adaptive average-
pooling, ensuring the flattened local outputs are standardized to 1024-dimensional vectors. Training
hyperparameters are available in Appendix J.2.2.

For ResNet-32, we adopt the same auxiliary network architecture as used by Wang et al. (2020),
comprising three convolutional layers and two fully connected layers. The training settings are
detailed in Appendix J.2.6.

Training with LL-contrec. For LL-contrec in Section 5.2, we combine Lcontrast with an image
reconstruction loss Lrec used in estimating I(h,x) (see Appendix J.2.7 for more details). Then, we
have Lcontrec = λ1Lcontrast + λ2Lrec, where λ1 = αβ and λ2 = α(1− β) (Wang et al., 2020). β
progressively increases as layers l deepen, such that β = l

L−1 , l ∈ {1, ..., L− 1}.

Training with Lfeat. For Figures 3, Table 1, Table 2, and I, we train the models using Lfeat, with the
training hyperparameters designated for each architecture. We can derive Lfeat by using fϕ(h) = h
in Eq. (1). For the fully connected layers, we directly use the output vector as h. For CNN, flattening
a feature map hmap ∈ RC×H×W leads to an unwieldy vector size. To address this, we employ the
average local feature h := 1

K

∑K
k=1 h

k, where K = HW .

J.2.5 REPLICATED FINDINGS.

For benchmarks not available in published papers, we reproduce baseline models with their open-
source codes.

For FC and Conv architectures. We train FF (Hinton, 2022), PFF (Ororbia & Mali, 2023),
and DRTP (Frenkel et al., 2021) on CIFAR-100 for Table 1 and Table 2. We apply the same
hyperparameters and architectures prescribed for CIFAR-10. To modify the architectures for CIFAR-
100, we upscale the output dimension of the final classifier from 10 to 100. This explains the increase
in the number of parameters in Table 1 and Table 2. Likewise, for PFF, which originally takes 28×28
grayscale images, we upscale the input dimension to accommodate 32× 32 RGB images.

LL-bpf experiments. Because LL-bpf is the BP-free version of LL-predsim, we use the same
training hyperparameters designated for LL-predsim to train LL-bpf models for Table 3. LL-bpf
models utilize two separate layer-wise projections. The first projection maps one-hot encoded labels
to 128-dimensional vectors using fixed random weights to prevent BP. The second projection requires
adaptive pooling, such that flatten local outputs become 4096-dimensional vectors. Then, a fully
connected layer projects the 4096-dimensional vectors to 128-dimensional vectors. Layers receive
error signals from the binary cross entropy loss between the projected 128-dimensional vectors. The
error signals are propagated by feedback alignment (Lillicrap et al., 2016) to prevent BP.
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J.2.6 TRAINING SETTINGS FOR RESNET-32 EXPERIMENTS

We train ResNet-32 (He et al., 2016) for five separate experiments: 1) Figure 1, 2) Figure 3, and 3)
Table V. The training configurations remain the same across these tasks, based on the specifications
from Wang et al. (2020). Namely, using an SGD optimizer with a Nesterov momentum (Sutskever
et al., 2013) of 0.9, the ResNet-32 models are trained for 160 epochs, with the L2 weight decay
ratio of 1e-4, batch size of 128, and the cosine annealing with an initial learning rate of 0.8. In all
our experiments, we compute local losses based on the output from each residual block. ResNet-32
comprises 16 residual blocks, resulting in 16 local losses.

J.2.7 DETAILS ON IMPLEMENTING MUTUAL INFORMATION EXPERIMENTS.

For Figure 3 and Figure I, we extract local features from the VGG8B models trained on CIFAR-10 to
estimate I(h,x) and I(h, y). We follow the same architectures and hyperparameters used by Wang
et al. (2020) for these experiments. Each estimation experiment employs bilinear interpolation to
align the local feature map’s height×width to 32× 32.

Estimating I(h, y). We train ResNet-32 to predict y using h as input. We employ the best test
accuracy as an estimate of I(h, y). Appendix J.2.6 summarizes the training setup for ResNet-32.
Given the varying dimensions of these layer-wise outputs, we adjust the input channel dimension to
align with the channel size of the local feature maps.

Estimating I(h,x). We train reconstruction networks to reconstruct x using h as input, such that
Lrec = LBCE(fψ(h),x), where LBCE is the binary cross-entropy loss, and fψ is a reconstruction
network. We employ 1 − LBCE between the output RGB image and x as an estimate of I(h,x).
fψ consists of two convolutional layers. The initial layer aligns the channel dimension of the local
feature maps to 12, and the subsequent layer transforms these maps into RGB images, ending with a
sigmoid activation function. The networks are trained for 10 epochs using the default Pytorch Adam
optimizer (Kingma & Ba, 2015), with an learning rate set at 0.001.
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K VISUALIZATION

K.1 LABEL EMBEDDINGS AND CONFUSION RATES

(a)

(b)

Figure VI: Label embedding similarity and confusion matrix of the VGG8B model trained using
Ldict on CIFAR-10. (a) Cosine similarity matrix of label embedding vectors. Each number in a cell
denotes the cosine similarity between label embedding vectors corresponding to each label pair. (b)
Confusion Matrix. Labels in the x-axis are the ground truth, and labels in y-axis are predicted labels.
Each cell value signifies the ratio of predicting yx as yy .

xi



Published as a conference paper at ICLR 2024

K.2 SEMANTIC RELATIONSHIP BETWEEN ADAPTIVE LABEL EMBEDDING VECTORS

Figure VII: The t-SNE Van der Maaten & Hinton (2008) visualization of CIFAR-100 label embedding
vectors. CIFAR-100 consists of 20 super-classes, each containing 5 sub-classes. The legend lists
these super-classes.
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K.3 SALIENCY MAPS
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Figure VIII: Saliency maps for incorrect top-1 prediction results.
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Figure IX: Saliency maps for correct top-1 prediction results.
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Figure X: Evolution of saliency maps across layers. The layer index denotes the source of the
extracted local features.
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