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Abstract

Recent research has enabled the rendering of talking
head videos that capture large dynamics of the head with
high fidelity. However, modeling the detailed identity-
specific microexpressions and spontaneous movements,
such as lip movement and eye blinking, while achieving high
synchronization between the auditory and visual signals re-
mains a challenge. In this paper, we address this issue with
the help of neural implicit functions conditioned on disen-
tangled audio. Specifically, we first extract audio features
that are disentangled into core auditory components (con-
tent, timbre, rhythm, and pitch) that retain identity-specific
information. Then, the disentangled audio embeddings are
fed into a conditional implicit function together with visual
embeddings so that high quality audio-visual mappings for
details are learned. Experimental results demonstrate that
our method can (1) successfully render detailed identity-
specific microexpressions that are personalized for each
person being modeled, and (2) improve fidelity of the audio-
visual rendered results in general.

1. Introduction & Related Works
Along with the emergence of deep learning methods for

content generation, talking head generation has attracted
significant attention due to its abundant applications. Talk-
ing head generation aims at synthesizing a realistic target
face, which talks in correspondence to the given audio se-
quences. This task generally requires attention to two as-
pects. Firstly in terms of dynamics, it is important to cap-
ture large dynamics of the head and microexpressions, such
as lip movements and eye blinks. Secondly, the generated
results should have high synchronization between the two
major modalities, auditory and visual. This is not simple
as the two modalities are quite different, entailing a diffi-
culty in bridging the inherently large domain gap between
the audio and visual signals in generating a talking head.

As the aforementioned issues are not trivial, previous

*These authors contributed equally.

works have shown various approaches, such as 2D [4,12,18]
(e.g., landmarks [17]) or 3D [8, 14, 15] intermediate repre-
sentations (e.g., 3D face models) to model the head. While
intermediate representations have advantages, they usually
lead to a mismatch in audio-visual mapping due to informa-
tion loss from mapping to a predefined finite solution set.
Recently, models that do not use intermediate representa-
tions, but rather direct implicit representations [7, 10, 11],
have captured the large dynamics of the talking head with
high fidelity, and are suitable for advanced talking head edit-
ing tasks [3,5,15,16]. By learning a head model solely from
the given video data, these models retain as much informa-
tion from the overall ground truth as possible.

However, these models are still limited in modeling per-
sonalized or identity-specific expressivity via microexpres-
sions (e.g., lip movements), as well as spontaneous move-
ments (e.g., eye blinks and sudden head movements). While
the models synthesize general talking behavior well, per-
sonalized behaviors, such as different habits in lip move-
ment even when the same word is pronounced, and instan-
taneous spontaneous movements in only a minority of the
frames are not well modeled. Thus, some models create
people who do not blink at all or blink unnaturally, as if
their eyes are fluttering while half-open, with low fidelity
to the ground truth. These aspects can lead to undesirable
phenomena, like the uncanny valley [6].

One potential reason for the unnatural modeling in pre-
vious models of customized microexpressions and sponta-
neous movements may be due to a lack of consideration of
appropriate audio embeddings for talking head generation.
Speech can be represented in various components, such as
content, pitch, timbre, and rhythm. However, speech mod-
els (e.g., DeepSpeech [1]) used in previous models build
audio features so that audio signals are recognized alto-
gether without consideration of the different components of
speech. We propose that disentangling multiple styles or
prosody information in audio can help with more expres-
sive and controlled speech and talking face synthesis.

Based on these unsolved problems in audio-driven talk-
ing head generation, our contributions are as follows:



• We present a model that can learn detailed identity-
specific microexpressions and spontaneous movements,
such as lip movement and eye blinking, with disentan-
gled audio features.

• Our disentangled audio representations allow audio-
visual mapping with higher modality correspondence.

2. Preliminaries
NeRF [10] models 3D implicit representations of static

objects or scenes via an MLP, which maps a 3D loca-
tion x = (x, y, z) and viewing direction d = (θ, ϕ) to
the corresponding volumetric density σ and emitted color
c = (r, g, b). The color of pixel C(r) along a camera ray r
is estimated by accumulating the color and transmittance of
N sampled points along the ray, based on density σ:

Ĉ(r) =
N−1∑
i=0

Ti (1− exp(−σiδi)) ci, where Ti = exp

(
−

i−1∑
j=0

σjδj

)
,

(1)
where δi is the distance between adjacent sampled points.
NeRF is optimized by comparing estimated colors Ĉ(r) for
a batch of rays R and their ground truth pixel colors:

L =
∑
r∈R

[∥∥C(r)− Ĉ(r)
∥∥2
2

]
(2)

AD-NeRF [5] presents a conditional NeRF with a se-
mantic feature of audio a as an additional input, along with
viewing direction d and 3D location x. In training NeRF for
the head, rigid face pose parameters Π = {R, t} are used
to transform sampling points of the head to the canonical
space. Then a NeRF for the torso is trained sequentially in
a similar manner, except with Π as an additional input:

Fhead
θ : (a,d,x) → (c, σ) (3)

F torso
θ : (a,d,x,Π) → (c, σ) (4)

For audio a, semantically meaningful information was ex-
tracted from acoustic signals via the DeepSpeech [1] model.
DeepSpeech is an end-to-end speech recognition, or speech-
to-text model known to be robust to noise, echo, and various
speaker-specific properties like pitch.

3. Method
Our model takes disentangled audio features to per-

form audio-driven talking head generation that achieves
to model detailed identity-specific microexpressions using
neural radiance fields. To attain disentangled content, tim-
bre, rhythm, and pitch from one audio source, we reference
SpeechSplit [13]. The disentangled audio embeddings ob-
tained from the encoders of SpeechSplit are then used in
combination with visual information in the form of 3D lo-
cation and viewing direction, to get the colors and densi-
ties for each 3D location with a certain audio via NeRF.

Figure 1. An overview of our model. (a) Audio is disentangled
into content, rhythm, and pitch for each speaker. (b) The disentan-
gled auditory components are concatenated with visual features as
input to NeRF.

In Sec. 3.1, we first present how an audio is disentangled.
Next, we describe how we achieve fine-grained head ren-
dering via NeRF with the decomposed audio embeddings.

3.1. Identity-specific Audio Representation

Human speech can be roughly decomposed into four
important components: content, timbre, pitch and rhythm.
Our approach shown in Fig. 1(a) is built upon SpeechSplit
[13] to disentangle an audio to achieve sophisticated and
discriminative audio representations for rendering a more
natural-looking talking person. SpeechSplit has an encoder-
decoder architecture trained to reconstruct the given mel-
spectrogram, S. The encoder contains three parallel sub-
encoders Ec, Er, Ep that take the outputs of the contamina-
tion module. Different audio components (content, rhythm,
and pitch) are contaminated respectively as Cc,Cr,Cp to
limit information each sub-encoder can see. We exclude
timbre in this step, because our model is trained to learn
a video of one person, so there already is only one voice.
Since every input to each sub-encoder is partially contami-
nated, each sub-encoder works as an information bottleneck
trained to extract one of the intact audio components, Ac,Ar

or Ap, to provide all necessary information to reconstruct
the original audio mel-spectrogram.

Ac = Ec(Cc), Ar = Er(Cr), Ap = Ep(Cp) (5)

The decoder D reconstructs a version of the original audio
mel-spectrogram Ŝ by combining these disentangled audio
embeddings from the sub-encoders.

Ŝ = D(Ac,Ar,Ap) (6)



3.2. Audio-visual Mapping for Details

After training the encoders for audio disentanglement in
Sec. 3.1, we extract the disentangled content, rhythm, and
pitch from the respective encoders. Then as in AD-NeRF,
but with better disentangled auditory features, content ac,
rhythm ar and pitch ap, we concatenate these with x and
d as an input to train a single NeRF to get the colors and
densities of each 3D location when a certain audio clip is
accompanied. As shown in Fig. 1(b), the neural function
can be formulated as:

Fθ : (ac,ar,ap,d,x) → (c, σ) (7)

The general procedure on training and volume rendering of
the NeRFs are same as those in AD-NeRF [5].

4. Experiments
4.1. Implementation Details and Computation Time

The original repository of AD-NeRF suffers from a long
training time due to data bottleneck with no support of
batching and multi-GPU training. In order to facilitate
our research process, we implemented our framework from
scratch in PyTorch-Lightning and Hydra. Thanks to the new
dataloader and framework, both training and inference time
were reduced by less than 1/2 on a single GPU and 1/5 with
four GPUs with a batch size of 4. All experiments were run
on V100 GPUs and the same hyper-parameters were used
as in SpeechSplit and AD-NeRF.

4.2. Evaluation metrics

We measure PSNR and SyncNet [2] scores to prove the
superiority of our method. SyncNet takes a pair of input
sequences to make a correlation based deep neural network
with anti-causal convolution sets and can be used to esti-
mate time delay for two different input sources. We use
SyncNet scores to measure synchronization quality between
audio and visual signals in talking head generation.

4.3. Overall Results

Quantitative Anaylsis Quantitative results are reported in
Tab. 1. Our method, using content, rhythm, and pitch em-
beddings from SpeechSplit performs better than our base-
line using DeepSpeech features as the audio embedding in
both PSNR and SyncNet scores.
Qualitative Analysis Results in the quantitative analysis
are backed up with qualitative results in the rendered lips
and eyes. Based on the generated video, our model in-
creases the lip detail and renders more natural eye blinks,
so that no more blurry or fluttering eye blinks occur. Pixel
difference heat map between the ground truth and rendered
images in Fig. 2 clearly show that our approach is better at
capturing not only the overall face, but also the eyes and

SpeechSplit
Rhythm

DeepSpeech
[1, 5]

SpeechSplit
Pitch

SpeechSplit
Content

SpeechSplit
(Ours)

DeepSpeech
and

SpeechSplit
PSNR(dB)↑ 23.48 24.98 25.82 26.77 27.49 27.64

SyncNet score↑ 3.426 5.355 5.252 5.478 5.555 5.558

Table 1. Quantitative Results. We report PSNR and SyncNet re-
sults for different types of audio embeddings on a video of Obama.

Figure 2. Heat map of pixel differences on different audio em-
beddings. Rendered at the same frame with just different audio
embeddings, our model using SpeechSplit for auditory represen-
tations shows more similar pixel values to the ground truth frame.

fine details of the face. The general fidelity to the overall
face and eye blinks seems to be in line with the increase in
PSNR, while the fidelity to the lip movements tend to be
proportional to the increasing SyncNet scores.
Discussion We speculate that this is due to the properties of
DeepSpeech and SpeechSplit. First, DeepSpeech is trained
with a speech-to-text task while SpeechSplit is trained via
audio reconstruction. Also, DeepSpeech features are ro-
bust to noise and variance in speaker traits, while Speech-
Split disentangles various auditory properties and preserves
speaker-specific information. As a result, when we learn
the audio-visual mapping with DeepSpeech, detailed lip and
eye movement show a general trend, instead of the person-
specific result, creating more blurry artifacts.

4.4. Ablation Study

Furthermore, we show ablation studies on various au-
dio embeddings. First, rendering quality improves in order
of rhythm, pitch, and content embeddings when used in-
dependently as shown in Tab. 1. These quantitative results
are in line with qualitative results, approached in a patch-
based method [9] that focuses on important areas of interest,
which in our case are eyes and lips. When ground truth has
two blinks, Fig. 3 shows that using just rhythm only gener-
ates one blink with a blurry lower lip. DeepSpeech shows
unnatural fidgety blinks, while pitch embeddings show rel-
atively lower audio-visual sync when used solely. Using
DeepSpeech and SpeechSplit together also increases PSNR



Figure 3. Results with different speech embeddings at blinks. Im-
ages are ordered from left to right in order of PSNR.

and SyncNet scores as shown in Tab. 1, implying that Deep-
Speech and SpeechSplit may hold different information that
are complementary to each other.

5. Conclusion

We have presented a method for high-fidelity talking
head synthesis that renders detailed identity-specific mi-
croexpressions and spontaneous movements that are per-
sonalized for each person. Our method improves the gen-
eral fidelity and realism of the rendered frames. For future
research, we could work on improving the audio-visual em-
beddings that allow not just accurate renderings, but also
more sophisticated audio-visual generation and manipula-
tion. Various methods, such as contrastive learning or self-
supervised learning, can be applied to disentangle speech
components suitable for learning high-quality audio-visual
relationships in different tasks.
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