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ABSTRACT
Graph convolutions have been successfully applied to recommen-
dation systems, utilizing high-order collaborative signals present in
the user-item interaction graph. This idea, however, has not been
applicable to the cold-start items, since cold nodes are isolated in
the graph and thus do not take advantage of information exchange
from neighboring nodes. Recently, there have been a few attempts
to utilize graph convolutions on item-item or user-user attribute
graphs to capture high-order collaborative signals for cold-start
cases, but these approaches are still limited in that the item-item or
user-user graph falls short in capturing the dynamics of user-item
interactions, as their edges are constructed based on arbitrary and
heuristic attribute similarity.

In this paper, we introduce Content-based Graph Reconstruction
for Cold-start item recommendation (CGRC), employing a masked
graph autoencoder structure and multimodal contents to directly
incorporate interaction-based high-order connectivity, applicable
even in cold-start scenarios. To address the cold-start items di-
rectly on the interaction graph, our approach trains the model to
reconstruct plausible user-item interactions from masked edges
of randomly chosen cold items, simulating fresh items without
connection to users. This strategy enables the model to infer poten-
tial edges for unseen cold-start nodes. Extensive experiments on
real-world datasets demonstrate the superiority of our model.
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1 INTRODUCTION
Recommendation systems play an indispensable role in real-world
applications such as online retail and video sharing platforms,
where information overload poses a significant challenge. Collabo-
rative Filtering (CF), the most successful technique for personalized
recommender systems, predicts items tailored to specific users by
capturing preference patterns commonly observed from user-item
interactions. Matrix factorization (MF) [26, 40, 43], neural network-
based models [22], and graph neural networks (GNNs) [21, 57, 65]
have been adopted for the CF approaches.

Despite the effectiveness of CF approaches, they encounter chal-
lenges when dealing with new users or fresh content, commonly
known as the cold-start problem–a persistent hurdle in recom-
mender systems. Specifically, GNN-based methods usually rely on
bipartite graphs formed by user-item interactions for recommen-
dations. However, the introduction of a cold user or item lacking
any interaction leads to zero information exchange with neigh-
boring nodes due to the absence of connectivity. Consequently,
recommendations become unfeasible for these cold entities.

To tackle the cold-start problem, side information has been em-
ployed [4, 25, 28, 44, 51] to represent the cold-start users or items.
Despite differences in detailed methods, they commonly learn to
represent users and items from their content signals in a common
latent semantic space, where user tastes and item characteristics
reside together. Specifically, most models first extract features from
the given side information, e.g., raw content or meta-data, either
using pre-trained models or end-to-end training. Subsequently,
as illustrated in Fig. 1, various methods have been employed to
map the modality-specific content features (x) to a common user-
item embedding space, denoted by z. Conventional approaches
have adopted multi-layer perceptron (MLP) [38], autoencoders [67],
or Generative Adversarial Networks (GANs) [8], as illustrated in
Fig. 1(A,B). These methods are not capable of explicitly reflecting
high-order collaborative signals, beyond the direct consumption,
into item features.

https://doi.org/10.1145/3626772.3657801
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Figure 1: Various mapping methods from content features to
CF representations

To capture high-order relationships among users and items more
explicitly, recent efforts adopt GNNs, as illustrated in Fig. 1(C),
to map content representation to CF schemes. AGNN [44] and
HERS [25], for example, learn to represent items by applying mes-
sage passing to adjacent nodes using graph convolution operations
on an item-item attribute graph. That is, the graph consists of items
as nodes and they are connected by an edge if they share common
attributes, e.g., same genre. As the node representations are learned
on this graph by aggregating information from nearby nodes, the
learned node (item) embeddings effectively capture unique charac-
teristics of the item contents. Not just the directly adjacent nodes,
however, this GNN-based approach allows access to information
further away, up to the number of graph convolution layers.

The primary reason for adopting GNNs for recommendation is
to leverage high-order connectivity of preference or consumption,
allowing the model to consider neighbors multi-hops away from the
target node [21, 57, 65]. The user-item interaction graph encodes
the most primitive relationship of preference or consumption in
recommendation; that is, a user A has interacted with an item B,
and thus performing information exchange on this user-item graph,
as illustrated in Fig. 1(D), would be the most natural.

Nevertheless, the previous works [25, 44] perform the informa-
tion exchange on an item-item graph, instead of the raw user-item
interactions. In fact, the item-item graph does not fully reflect the
dynamics of the user-item interactions, since the edges have been
constructed based on attribute similarity, which is often defined
arbitrarily and heuristically. That is, the meaning of edges in the
item-item attribute graph is what we believe relevant, relying on
an assumption that items with similar attributes share comparable
preferences, rather than an objective fact. The user-item interaction
graph, on the other hand, conveys an obvious fact that a specific
user has consumed a particular item, using an edge. Consequently,
directly performing message passing on this graph would be less
biased by human intuition.

Then, why have we been adopting the item-item graph? It is
probably because the graph convolution is not directly applicable
on the user-item interaction graph under the cold-start setting,
since the cold-start user or item nodes are completely isolated from
others, so no information exchange arises for them. For this reason,
existing methods [25, 44] have adopted the item-item graph to
connect isolated items based on the similarity of their attributes.

Then, would it never be possible to apply graph convolutions
directly on the user-item interaction graph for cold-start recom-
mendations? If this is possible, we will be able to perform cold-start
recommendations without relying on arbitrary similarity measure-
ments from item attributes. In this work, we propose a GNN-based
recommendation model that is directly supervised on the user-item
interaction signals in a cold-start situation, as shown in Fig. 1(D).
To achieve this goal, we develop a novel framework called Content-
based Graph Reconstruction for Cold-start item recommendation
(CGRC). In order to connect isolated cold-start users and items,
we propose a novel masked graph autoencoder model, inspired
by the recent success of masked autoencoder model in different
domains [12, 19, 24]. Specifically, our method learns to reconstruct
plausible user-item interactions by masking a subset of existing
user-item interaction edges in the training data and training the
model to recover those hidden edges. Upon this simulated train-
ing, the model can infer plausible edges for an unseen cold-start
node using the learned pattern. Through our masked graph autoen-
coder approach, our model learns to reconstruct potential user-item
relationships (edges) in a self-supervised manner.

Our proposed method can be summarized as follows. First, our
model chooses a subset of nodes to simulate a cold-start scenario
and masks out all edges connected to them. This is in contrast
to the conventional masked graph autoencoders, where several
edges are randomly masked regardless of the nodes. Then, we
employ an edge prediction module composed of multiple graph
convolution layers to learn user preferences from their neighbors at
various distances. Once trained, an edge decoder reconstructs the
hidden edges, connecting the cold items to the most relevant users.
Finally, on the reconstructed graph where cold items are linked
to appropriate users, our model performs another set of graph
convolutions to output user and item embeddings. Using these
embeddings, the target user-item preference can be estimated.

Our contributions can be summarized as follows:

• To the best of our knowledge, CGRC is the first model capable
of addressing the cold-start problem by directly leveraging
interaction-based high-order connectivity.

• We exploit multimodal contents and graph masked autoen-
coder structure tailored for cold-start item recommendation
to adaptively distill informative signals and facilitate self-
supervised reconstruction of user-item edges.

• From extensive experiments on real-world datasets, we verify
the exceptional performance of CGRC.

2 RELATEDWORKS
Cold-start Recommendations. Collaborative Filtering (CF) has
been proven effective in personalized recommendation systems,
especially when abundant historical data is available. However,
its persistent challenge lies in the cold-start problem, where there
is no historical interaction data for users or items [9, 22, 26, 32,
39, 41, 43, 47, 50]. To address this problem, incorporating auxil-
iary information of items or users such as content features [36–
38, 56], into recommendationmodels has been commonly employed.
DropoutNet [54] randomly drops warm items during training to
simulate cold-start, while diverse approaches including CB2CF [4],
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Heater [70], CLCRec [61], and CCFCRec [68] integrate extra ob-
jective terms to align content information with collaborative sig-
nals. ALDI [27] employs the teacher-student method to mitigate
the inherent gap between warm and cold items. Motivated by
the remarkable achievements of Generative Adversarial Networks
(GAN) [17] and variational autoencoder (VAE) [30], CVAR [67] has
applied generative models to map content features to CF representa-
tions [2, 8, 51]. Moreover, meta-learning approaches [13, 35, 42, 69]
also have been proposed to address cold-start recommendation
problems.
Graph Neural Network (GNN) for Recommendations. GNNs
have been successful in various graph-based learning tasks, such as
node classification [6, 7, 48, 53] and link prediction [49, 71]. Inspired
by the success of GNNs, many researchers have incorporated graph
structures into recommendation models [10, 58, 63, 65]. GC-MC [5]
introduces a graph autoencoder framework on a user-item bipartite
interaction graph, treating the rating prediction task as the link
prediction. NGCF [57] adopts GNN-based collaborative filtering
to learn user and item embeddings. LightGCN [21] simplifies the
Graph Convolution Network (GCN) by removing non-essential
components for collaborative filtering.

Recent studies have successfully utilized graphs for cold- and
cool-start recommendations. STAR-GCN [66] andMGL [59] employ
the GCN model on user-item graphs with only a few interactions
available for users and items. Strictly speaking, these approaches
are applicable only to cool-start cases, but not to the complete cold-
start scenarios. Our work, on the other hand, addresses a complete
cold-start scenario where no interactions are available at all.

HERS [25] and AGNN [44] are two other previous methods that
tackle the complete cold-start scenarios with graphs. HERS [25]
models user-user and item-item relations. AGNN [44] constructs
the user-user and item-item attribute graphs to learn the distribu-
tion of attributes with an extended variational auto-encoder (eVAE).
Similarly to our method, they also utilize GNN-based approaches to
tackle the cold-start problem. However, they apply message passing
on user-user and item-item graphs rather than on the user-item
interaction graph. Thus, both of them leverage high-order connec-
tivity on the user-user or item-item graphs, which are constructed
by manually and arbitrarily designed similarity metrics between
users or items. Our method, on the other hand, learns high-order
connectivity directly from the user-item interaction graph.
Graph Masked Autoencoder. Motivated by the recent success of
generative self-supervised learning in both natural language pro-
cessing [12, 45] and computer vision [3, 19, 62], similar ideas have
been introduced to graph representational learning. For example,
GraphMAE [24] enhances node and graph classification perfor-
mance through masking and restoring the nodes. Subsequently,
GraphMAE2 [23] improves its decoder to enhance the performance.
These methods share commonalities with our method in that all em-
ploy masking and reconstruction strategy. However, GraphMAEs
are devised for the graph classification task and mask the nodes.
On the other hand, our CGRC tackles cold-start recommendation
by masking and restoring the edges. Additionally, S2GAE [52] in-
troduces a graph autoencoder structure for node classification, link

prediction, and graph classification. This method also adopts mask-
ing and restoring, but it does not target the cold-start recommen-
dation task. Recently, MAERec [64] incorporates graph masked
autoencoder for sequential recommendations. Building upon this
line, our approach devises a graph masked autoencoder structure,
further advancing it with multimodal representation to address the
comprehensive cold-start item recommendation scenario.

3 THE PROPOSED METHOD: CGRC
In this work, we focus on recommending completely new items
without any interactions. Our proposed model architecture is com-
prised of three components: Node Encoder, Graph Reconstructor,
and Cold-start Recommender, as illustrated in Fig. 2. Once users
and items are encoded with their multimodal features, some items
are randomly chosen, and all edges connected to them are masked
out to simulate a cold-start scenario. The model learns to recon-
struct those edges, so that they can generalize it to unseen cold-start
items at testing. Then, within the cold-start recommender, user and
item graph embedding is obtained through the reconstructed graph,
exploiting interaction-based high-order connectivity.

3.1 Problem Formulation
LetU andI be a set of n users and a set ofm items, respectively. Let
R ∈ {0, 1}𝑛×𝑚 be a binary interaction matrix of 𝑛 users and𝑚 items,
where R𝑢𝑖 = 1 if the user 𝑢 ∈ U has interacted with the item 𝑖 ∈ I,
and R𝑢𝑖 = 0 otherwise. Each item 𝑖 is accompanied with C content
elements, e.g., raw content features such as video, image, audio, and
text, or meta-data like genre, creator, year, and so on. We construct
a bipartite graph G = (V, E) of the user-item interactions, where
V = U ∪ I and E = R, the user-item interactions. We denote N𝑢
as the set of items that the user 𝑢 has interacted with. Likewise, N𝑖
is the set of users who have interacted with the item 𝑖 .

We aim to tackle the cold-start item recommendation task by
estimating the preference score R̂𝑢𝑖′ for a user 𝑢 ∈ U and item
𝑖′ ∉ I (that is, the user is not a cold-start but only the target items
are cold-start). Note that the proposed idea is equally applicable
to the cold-start users as well, if informative side information for
users is provided. We showcase only the cold-start item cases in
this paper, mainly due to the lack of publicly available meaningful
side information for users, concerning their privacy.

3.2 Node Encoder
3.2.1 User and Multi-modal Item Encoding Layer. In the user encod-
ing layer, following the traditional collaborative filtering models,
the user 𝑢 is represented through an embedding layer, yielding
e𝑢 ∈ R𝑑 , where 𝑑 is the embedding size.

To address cold-start items, however, the item encoding layer
leverages 𝐶 content signals (or side information) to represent an
item 𝑖 . These signals are processed by modality-specific encoders,
such as ViT [14] (visual), BERT [12] (text), and AST [16] (audio),
followed by a learnable linear projection. Each modality represen-
tation is denoted as f (𝑐 )

𝑖
∈ R𝑑𝑐 , where 𝑐 = 1, ...,𝐶 identifies each

content feature, and 𝑑𝑐 is the embedding dimensionality for the
modality 𝑐 .

Subsequently, these content features are aggregated (i.e., con-
catenated and followed by a fully-connected (FC) layer) to produce
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Figure 2: Overall Architecture

the final content-based item embedding x𝑖 ∈ R𝑑 , where 𝑑 is the
dimensionality of the final embedding:

x𝑖 = W
(
f (1)
𝑖

; f (2)
𝑖

; ... ; f (𝐶 )
𝑖

)
+ b, (1)

whereW ∈ R𝑑×
∑

𝑐 𝑑𝑐 and b ∈ R𝑑 .

3.2.2 Multi-modal Alignment Loss. In a simple approach, we ex-
pect that the projection layer in Eq. (1), which integrates diverse
multimodal content features, will autonomously learn multimodal
relationships within the same item. While this simple approach rea-
sonably combinesmulti-modal signals, we delve deeper into leverag-
ing multi-modal relationships through self-supervision. Specifically,
we apply contrastive loss [11] on all item embeddings in each mini-
batch, aiming to enhance the similarity between embeddings for the
same item across different modalities, while minimizing similarities
between all other combinations. Formally, the multi-modality loss
L between two modalities 𝑎 and 𝑏 for the same item 𝑖 is given by

LM = −
𝐶−1∑︁
𝑎=1

𝐶∑︁
𝑏=𝑎+1

log
exp(sim(f (𝑎)

𝑖
, f (𝑏 )
𝑖

)/𝜏𝑠𝑠𝑙 )∑𝐵
𝑗 exp(sim(f (𝑎)

𝑖
, f (𝑏 )
𝑗

)/𝜏𝑠𝑠𝑙 )
, (2)

where sim(·) computes the similarity between two vector repre-
sentations of modalities using the inner product; 𝜏𝑠𝑠𝑙 represents a
temperature hyperparameter, and 𝐵 denotes the number of exam-
ples within a batch.

3.3 Graph Reconstructor
The key innovation of this work lies in this graph reconstruction
step. Building upon the success of masked autoencoding in the
fields of CV [19], NLP [12] and GNN [24], our approach predicts
potentially relevant users to a cold-start item, simulating cold-start
situations with the given user-item interaction graph G by masking
out all edges for a subset of randomly chosen item nodes. The
model is trained to estimate the existence of missing edges to other
remaining nodes, based on the content signals of the nodes. In this
way, the model is expected to learn the underlying relationship
between the content signals and the connectivity within the graph,
which corresponds to the collaborative signals in recommendation
systems.

3.3.1 Masked Graph G′. From the user-item bipartite graph G, we
construct a masked graph, denoted by G′, to simulate the cold-start

scenarios. Specifically, we first randomly choose some item nodes
on G as cold items, Icold ⊂ I, with the probability of 𝜌 . Then, we
mask out all the edges associated with these items in Icold:

Emasked = {(𝑢, 𝑖) ∈ E |𝑢 ∈ U, 𝑖 ∈ Icold}. (3)

The masked graph is formed as G′ = (V, E − Emasked). (Note that
the masked items Icold still exist in the graph G′; just being isolated
from other nodes to simulate cold-start.) From the recommendation
perspective, these masked edges indicate hidden relevance between
a cold item and a user, and we train the model to relate these
hidden relevance using the content signals, which are available
for the cold items. Once trained, the model is expected to discover
potentially relevant users for an unseen cold-start item, generalizing
the learned patterns from the contents to the user-item preference.

3.3.2 Graph Convolution Layers. Once the masked graph G′ is con-
structed, we apply graph convolution layers (e.g. LightGCN [21],
NGCF [57]) to learn users and items representations by incorporat-
ing both their own representations and those of their neighboring
nodes. This enables us to capture user preferences at multi-hop
neighbors. For instance, to generate the user representation, the
first layer aggregates all the items preferred by the user (user-item),
and the second layer integrates other users who shared preferences
for commonly preferred items (user-item-user). Extending the num-
ber of layers allows a more comprehensive understanding of the
user preferences, by drawing insights from more distant neighbors.

At each layer, following LightGCN [21], a graph convolution
layer updates node embeddings by

H(ℓ ) = (D′− 1
2A′D′− 1

2 )H(ℓ−1) , (4)

whereA′ =
(
0 R′

R′⊤ 0

)
∈ R(𝑛+𝑚)×(𝑛+𝑚) is the adjacencymatrix of

the graph G′ and D′ ∈ R(𝑛+𝑚)×(𝑛+𝑚) denotes the diagonal degree
matrix, where each diagonal element D′

𝑖𝑖
represents the number of

non-zero entries in the 𝑖-th row of the adjacency matrix A′. Here,
R′ ∈ R𝑛×𝑚 is the user-item interaction matrix corresponding to
the masked graph G′. Note that our method is not confined to the
specific method of LightGCN; other GCN variants can be applied
as well, e.g., NGCF [57]. Stacking 𝐿 graph convolution layers, we
produce 𝐿 node representations {H(1) , H(2) , . . . , H(𝐿) }, where each
H(ℓ ) ∈ R(𝑛+𝑚)×𝑑 captures the neighborhood structure within ℓ
hops for each node.
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Similarly to the conventional GNN encoders, each user node
𝑢 ∈ U is initiated with h(0)𝑢 = e𝑢 and each item node 𝑖 ∈ I
is initiated with h(0)

𝑖
= x𝑖 . However, since we perform the graph

convolution operations on the masked graph G′, not on the original
graph G, the cold item nodes (Icold) are frozen to their initialized
values, as they are disconnected from other nodes in G′ and thus
no information exchange arises with their neighbors. Other warm
nodes, including users and warm items (I − Icold), are updated by
performing graph convolution operations in the conventional way,
excluding the edges connected to a cold-start item node. At each
layer ℓ , the node embedding for a user 𝑢 and an item 𝑖 is denoted
by h(ℓ )𝑢 and h(ℓ )

𝑖
, respectively, for ℓ = 1, ..., 𝐿. In the end, the GNN

encoder generates
{
h(ℓ )𝑢 , h(ℓ )

𝑖

}𝐿
ℓ=1

for all 𝑢 ∈ U and 𝑖 ∈ I, but the
cold items in Icold are not updated and keep the initalized value, x𝑖 .

3.3.3 Edge Predictor. The edge predictor, depicted in Fig. 2, esti-
mates the probability of a connection between a user 𝑢 ∈ U and
each cold item 𝑖 ∈ Icold, determining whether they should be con-
nected or not, leveraging the user and item embeddings learned at

various levels,
{
h(ℓ )𝑢 , h(ℓ )

𝑖

}𝐿
ℓ=1

.
Specifically, the edge predictor is a binary classifier estimating

the score 𝑝 (𝑢, 𝑖) of an edge to exist between a user 𝑢 and an item 𝑖 .
There are multiple options to build this predictor [31, 52, 55]. As
its input, we take the 𝐿 embeddings, h(ℓ )𝑢 and h(ℓ )

𝑖
for ℓ = 1, ..., 𝐿,

and take their mean to aggregate them:

h𝑢 =
1
𝐿

𝐿∑︁
ℓ=1

h(ℓ )𝑢 , h𝑖 =
1
𝐿

𝐿∑︁
ℓ=1

h(ℓ )
𝑖

∀𝑖∈Icold
= x𝑖 . (5)

Note that we do not need to take a mean for the item features, since
this edge predictor takes only a cold item as its input, and cold item
features h(ℓ )

𝑖
are always the same regardless of ℓ = 1, ..., 𝐿. There

are multiple options for the classifier as well; e.g., an inner-product
between the user and item embeddings, 𝑝 (𝑢, 𝑖) = ⟨h𝑢 , h𝑖 ⟩, or a feed-
forward network on top of the concatenation of the user and item
embeddings, 𝑝 (𝑢, 𝑖) = MLP( [h𝑢 ; h𝑖 ]), where h𝑢 and h𝑖 stand for the
final embeddings of the user 𝑢 and item 𝑖 . We empirically validate
aforementioned design choices in our ablation study section 4.3.4.

3.3.4 Reconstruction Loss. At training, we predict 𝑝 (𝑢, 𝑖) for all
𝑢 ∈ U and 𝑖 ∈ Icold, and for each cold item, we connect the
top-𝐾 user nodes with the highest predicted scores, where 𝐾 is a
hyperparameter. As a result, we build a reconstructed graph, denoted
by Ĝ = (V, E′), where E′ = (E − Emasked) ∪ Erecon, where Erecon
is the set of reconstructed edges between cold items and user. The
training loss for reconstructing masked edges is

LE = − 1
|Emasked |

∑︁
(𝑢,𝑖 ) ∈Emasked

log
exp(𝑝 (𝑢, 𝑖))∑

𝑗∈Icold\N𝑢
exp(𝑝 (𝑢, 𝑗)) , (6)

where 𝑝 (𝑢, 𝑖) is the estimated link score between the user 𝑢 and
a positive cold item 𝑖 , while 𝑝 (𝑢, 𝑗) is the score between the user
𝑢 and a cold item 𝑗 selected with negative sampling. In contrast
to conventional graph autoencoders, which typically focus on re-
constructing edges for homogeneous nodes [52, 64], our proposed
model is designed to reconstruct masked user-item interaction
edges.

3.4 Cold-start Recommender
3.4.1 Graph Convolution Layers on the Reconstructed Graph Ĝ.
After reconstructing the edges for the simulated cold items, we
employ another set of graph convolution layers, similar to the one
used in Sec. 3.3.2, on the reconstructed graph Ĝ to obtain the final
user and item embeddings, z𝑢 and z𝑖 , respectively.

Specifically, we iteratively performmessage-passing on the graph
Ĝ using Eq. (4), for 𝐿 times. This process generates user and item
embeddings at each layer, denoted by z(ℓ )𝑢 and z(ℓ )

𝑖
for ℓ = 0, ..., 𝐿.

Then, the final user and item representations z𝑢 , z𝑖 are produced
either by concatenating all 𝐿 + 1 embeddings (NGCF [57]) or by tak-
ing an average of them (LightGCN [21]). Subsequently, we predict
the preference score R̂𝑢𝑖 by

R̂𝑢𝑖 = z⊤𝑢 z𝑖 . (7)

The rationale behind employing a GNN on the reconstructed
graph Ĝ lies in enhancing the information flow from cold item em-
beddings tomulti-hop neighbors. This effectively utilizes interaction-
based high-order connectivity, which is the most advantageous
feature of GNN in recommender system [21, 57]. The detailed illus-
tration of this process can be found in Fig. 2. This approach enables
the creation of more fine-grained final user and item embeddings,
thereby enabling high-quality recommendations using cold items.
The empirical validation of the effects of applying GNN on the
reconstructed graph is presented in our ablation study 4.3.3.

Note that this step is performed on the reconstructed graph Ĝ
only at testing. This message-passing step is trained on the origi-
nal complete graph G due to the instability of the reconstruction
step. Since a reconstructed edge does not necessarily indicate ac-
tually relevant user-item interaction at the early stage of training,
message-passing on this unstable reconstructed graphwould lead to
significantly noisy node embeddings. Thus, similarly to the teacher
forcing [33], we train the graph convolution itself on the original
graph during training.

3.4.2 Rating Ranking Loss. Utilizing the user z𝑢 and item z𝑖 em-
beddings, we subsequently train the model to assign higher scores
to preferred items and lower scores for non-preferred ones. We
employ the contrastive loss [20, 34], a prevalent approach in repre-
sentation learning. Specifically, for each user, the items they prefer
are identified as positives, and conversely, all other items in the
minibatch are considered negatives. The model is optimized to max-
imize the positive pairs and to minimize the negative pairs. Rating
Ranking Loss LR for each mini-batch is defined by

LR = −
∑︁
𝑖∈N𝑢

log
exp(sim(z𝑢 , z𝑖 )/𝜏)∑𝐵

𝑗∉N𝑢
exp(sim(z𝑢 , 𝑧 𝑗 )/𝜏)

(8)

where sim(a, b) = a⊤b, 𝜏 is a temperature hyperparameter, and 𝐵
denotes the number of examples within a mini-batch.

3.5 Overall Loss Function
The overall loss function linearly combines the three losses pre-
sented above:

L = 𝜆MLM + 𝜆ELE + LR, (9)
where LM is the multi-modal alignment loss within the Node En-
coder (Sec. 3.2), LE is the reconstruction loss within the Graph
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Table 1: Statistics of the datasets with multi-modal item Vi-
sual (V), Acoustic (A), Textual (T) contents

Dataset TikTok ML-1M Yahoo Movie

Modality V A T V A T V A T
Emb. Dim 128 128 768 768 768 768 768 768 768

User 9,308 6,039 5,353
Item 6,710 2,819 2,739
Interactions 68,722 730,012 70,244

Density 0.11% 4.29% 0.48%

Reconstructor (Sec. 3.3), and LR signifies the recommendation loss
in the Recommender (Sec. 3.4). 𝜆{M, E} are hyperparameters control-
ling the relative importance among the losses.

4 EXPERIMENTS
We conduct extensive experiments to verify the efficacy of CGRC
on multiple cold-start recommendation datasets. Our experiments
aim to answer the following research questions:

• RQ1: How does CGRC perform compared to the state-of-
the-art cold-start item recommendation models?

• RQ2: How do different components contribute to the per-
formance of CGRC?

• RQ3: How do the hyperparameters affect the performance
of CGRC?

• RQ4: How does our CGRC model perform qualitatively?

4.1 Experimental Settings
4.1.1 Datasets. We conduct experiments on three widely used
video domain datasets: MovieLens-1M [18], Tiktok [60], and Yahoo
Movie1. These datasets are chosen as they contain not only user-
item interaction records but also rich content signals, e.g., visual
scenes, textual plot, metadata like genre, or audio. The statistics of
these datasets are detailed in Table 1.

For the TikTok dataset, the interaction data is provided without
explicit ratings (i.e., click), so we assume all the interactions to
be implicit. On the other hand, both MovieLens and Yahoo Movie
provide explicit ratings ranging from 1 (least preferred) to 5 (most
preferred). We convert these ratings to implicit ones using 3 as the
threshold, following previous works [4].

The items are randomly split into training, cold validation, and
cold test sets in a 70:15:15 ratio, following CCFCRec [68]. We use the
cold validation set to determine hyperparameters and the cold-test
set to evaluate the final performance.

4.1.2 Content Features. In our experiments, we use visual, text,
and audio features. The Tiktok dataset provides all three types of
features, so we take the preprocessed version provided by MMSSL2.
According to MMSSL, the visual and acoustic features of micro-
videos are extracted and published without providing the raw data
(probably due to copyright), while the textual embeddings are en-
coded with Sentence-BERT [46].

On the other hand, the MovieLens and Yahoo Movie datasets of-
fer limited content information, requiring additional data collection.

1https://webscope.sandbox.yahoo.com/
2https://github.com/HKUDS/MMSSL

For visual content of these movie datasets, we use movie trailers
provided by MovieLens [1] and MovieNet3 due to copyright issues.
From each video, frames of dimensions 224 × 224 are sampled at
2 fps. To exclude potentially irrelevant content such as age rating
screens or ending credits, the first and last 10% of sampled frames
are omitted. We extract frame-level features from a pre-trained
Vision Transformer (ViT) [14], then subsequently average these
features to obtain video-level representations. Regarding textual
content in the movie datasets, we utilize movie synopses obtained
from imdb.com for MovieLens. The Yahoo Movie dataset inher-
ently includes synopses. These synopses, typically comprising 2-3
sentences summarizing the movie overview, are tokenized using
uncased BERTBASE [12]. For audio content in the movie datasets,
we extract audio segments lasting 32 seconds from the movie trail-
ers. Subsequently, the Audio Spectrogram Transformer (AST) [16]
is employed to derive audio features.

4.1.3 Baseline Methods. We compare CGRC with the following
cold-start item recommendationmethods:DropoutNet [54], which
adapts to cold-start by intermittently omitting warm items at train-
ing, indirectly converting the content of cold-start items into warm
embeddings,Heater [70], which jointly trains both warm and cold
embeddings without suffering from error superimposition problem
through randomized training and mixture-of-experts transforma-
tion,AGNN [44], which exploits the attribute graph,CLCRec [61],
which incorporates collaborative signals in the content representa-
tions for both warm and cold-start items with contrastive learning,
CVAR [67], which employs conditional variational autoencoders
to warm up cold-start item embeddings, and CCFCRec [68] ex-
ploiting co-occurrence collaborative signals and item attributes.

4.1.4 Evaluation Protocols. We evaluate the recommendation per-
formance by ranking unseen items for each user in a held-out
test set, then comparing the top-𝑘 items from the ranked list with
the items that the user actually gave positive feedback to. We
adopt three widely used metrics {Precision, Recall, NDCG}@𝑘 with
𝑘 ∈ {5, 10, 20}.

4.1.5 Implementation Details. To train CGRC, we use Xavier initial-
ization [15] and Adam optimizer [29]. We use a batch size of 4096,
and initial learning rates are set to 10−3 for TikTok and ML-1M,
and to 10−4 for Yahoo Movie. We vary the embedding dimension-
ality 𝑑 ∈ {8, 16, 32, 64, 128, 256, 512}. To create the masked graph
G′, we try a mask ratio of {0.1, 0.3, 0.5, 0.7, 0.9} across all datasets.
For the loss balancing factors 𝜆{M,E}, we vary from {0, 0.5, 1.0, 2.0},
respectively. For the number of edges 𝐾 to recover for each cold
item from Ĝ, we cross-validate within {5, 10, 20, 30, 40, 50}. We
explore the number of graph convolution layers 𝐿 within {0, 1, 2, 3,
4, 5}. This search is conducted on both the masked graph G′ and
the reconstructed graph Ĝ to identify the ideal number of layers.
The best choices are empirically discovered in Sec. 4.3.2 and 4.3.3.

Among many other GNN encoders, we select LightGCN [21] for
our graph convolution method due to its concise and simple struc-
ture. Both 𝜏𝑠𝑠𝑙 and 𝜏 are uniformly set at 0.5 for all datasets. To en-
sure fairness, we configure the baseline methods’ hyper-parameters
to their optimal settings, determined by cross-validation.

3https://movienet.github.io/
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Figure 3: Effect of Number of Layers on G′

4.2 Overall Performance (RQ1)
We compare our proposedmodel with six other state-of-the-art cold-
start recommendation methods, presenting the results in Table 2.
CGRC consistently outperforms the baselines inmost metrics across
all three datasets, confirming the superiority of CGRC in cold-start
item recommendation attributed to its utilization of interaction-
based high-order connectivity.

Notably, CGRC achieves even stronger performance on TikTok
and Yahoo Movie, showing higher sparsity (see Table 1). This ob-
servation demonstrates that our method is particularly stronger
in cold or cool start cases. On a denser dataset, MovieLens, CVAR
demonstrates relatively comparable performance with ours espe-
cially when 𝑘 is small. However, CGRC still maintains competitive
performance even on this denser case.

This superiority stems from the fact that, compared with con-
trastive learning-based methods (CLCRec and CCFCRec) and at-
tribute graph-basedmethods (AGNN), CGRC explicitly incorporates
high-order collaborative signals into item features.

4.3 Ablation Study (RQ2)
We conduct ablation studies to explore how each component of
our CGRC contributes to its overall performance. We utilize two
datasets, TikTok and Yahoo Movies, for ablation studies.

4.3.1 Effect of Masked Graph Autoencoder Structure. We first in-
vestigate the impact of the masked graph autoencoder (MGAE)
architecture on recommendation performance.

In Table 3, the Graph Encoder refers to the utilization of graph
convolution layers, e.g., LightGCN [21], to encode the masked graph
G′. Without the Graph Encoder, the user representation is directly
obtained from the user embedding 𝑒𝑢 without exchanging infor-
mation with neighboring nodes. The MLP decoder denotes the
MLP layer used to calculate the edge probability in Fig. 2. Without
the MLP decoder, the edge probability is determined by the inner
product of the user and item representations.

According to the results in Table 3, the best performance on
both datasets is achieved when both the graph encoder and the
MLP decoder are used. This combination appears to optimize the
effectiveness of the MGAE structure in the context of cold-start
recommendations, highlighting the benefits of a comprehensive
encoding and decoding process.

4.3.2 Effect of Number of Layers on Masked Graph G′. CGRC em-
ploys 𝐿 graph convolution layers on the masked graph G′ to derive
the node representations (Sec. 3.3.2). We investigate the optimal
number of these layers on the overall recommendation performance.
Fig. 3 illustrates the performance with a varied number of GCN
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Figure 4: Effect of Prediction Method

layers on the two datasets. The best performance is achieved with
2 layers for both TikTok and Yahoo Movie datasets, aligning with
the findings in the LightGCN paper [21].

4.3.3 Effect of Prediction Method on Reconstructed Graph Ĝ. Recall
that CGRC becomes capable of recommending isolated cold items by
generating the reconstructed graph Ĝ. With the newly discovered
𝐾 edges from these cold items, they become a part of the graph and
eventually are recommended to the connected users. In order to
further leverage high-order connectivity with the newly connected
cold items, we apply additional graph convolution layers on the
reconstructed graph Ĝ, as mentioned in Sec. 3.4.1.

Fig. 4 illustrates the effect of different numbers of additional
GCN layers on the two datasets. Consistent with the findings in
the LightGCN paper [21], the best recommendation performance is
achieved with 2 layers for the TikTok dataset and 3 layers for the
Yahoo Movie dataset. In this experiment, we confirm that having
at least one layer of the graph convolutions on the reconstructed
graph indeed helps.

4.3.4 Effect of Aggregation Methods. Selecting the optimal decoder
for a given task is a critical aspect of the masked graph autoen-
coder framework [23, 24]. Therefore, we investigate multiple design
choices for our masked graph autoencoder framework to obtain
a user and edge representation. Specifically, we try a couple of
approaches to aggregate 𝐿 user representations that are produced
at each graph convolution layer, in our edge predictor (Sec. 3.3.3):
1) concatenation of the 𝐿 representations (Concat), and 2) taking
an average of them (Mean). Similarly, we also try two aggregation
approaches to combine the final user and item representations, h𝑢
and h𝑖 : 1) concatenation (Concat), and 2) element-wise multiplica-
tion (Multiply). Once they are aggregated, the combined embedding
goes through an MLP layer.

The results in Table 4 highlight the superior performance of
the mean pooling across the 𝐿 user node representations, followed
by concatenation with the item representation to form an edge
representation on both datasets. Despite its simplicity, the mean
pooling presents stronger robustness to noisy features across differ-
ent representation layers. Additionally, the concatenation approach
preserves diverse information, making it well-suited for represent-
ing edge features involving both user and item representations.

4.3.5 Ablation on Content Features. In our study, we leverage mul-
timodal features to represent items, incorporating video (V), audio
(A), and text (T) modalities. This naturally raises the question: which
modality has the most significant impact on recommendations? To
explore this, we conduct a modality ablation study on the two
datasets in Table 5.
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Table 2: Overall performance (%) comparison with cold-start recommendation models on three datasets. The best performance
is boldfaced, and the second best is underlined.

Dataset Method Precision (↑) Recall (↑) NDCG (↑)
@5 @10 @20 @5 @10 @20 @5 @10 @20

TikTok

DropoutNet [54] 0.49 0.42 0.46 0.80 1.48 2.68 0.81 0.98 1.28
Heater [70] 0.44 0.41 0.39 0.83 1.45 2.72 0.78 0.87 1.20
AGNN [44] 0.57 0.65 0.53 1.12 3.64 4.60 1.15 1.94 2.15
CLCRec [61] 0.44 0.41 0.34 1.34 2.08 2.90 1.01 1.27 1.49
CVAR [67] 0.51 0.46 0.47 0.81 1.50 2.89 0.73 0.93 1.28
CCFCRec [68] 0.61 0.55 0.49 1.17 1.89 3.40 1.11 1.33 1.67
CGRC (Ours) 0.99 0.94 0.80 2.87 4.75 7.83 2.22 2.88 3.64

MovieLens

DropoutNet [54] 6.01 5.74 5.35 1.80 3.48 6.21 5.65 5.94 6.63
Heater [70] 4.85 5.38 5.59 1.33 3.21 6.77 5.46 6.07 6.81
AGNN [44] 9.96 9.47 7.33 3.15 5.77 8.57 9.17 9.97 9.70
CLCRec [61] 10.44 9.61 8.65 3.72 6.75 11.50 10.51 10.72 11.76
CVAR [67] 14.70 12.71 10.95 4.61 7.49 12.78 16.25 15.23 15.50
CCFCRec [68] 11.95 11.15 10.34 3.46 6.38 11.76 12.42 12.31 13.26
CGRC (Ours) 15.21 13.98 12.36 5.38 9.73 16.60 16.01 16.04 17.22

Yahoo Movie

DropoutNet [54] 1.19 1.08 1.09 1.93 3.30 6.49 1.76 2.24 3.23
Heater [70] 0.88 0.92 0.93 1.40 2.74 5.59 1.21 1.69 2.72
AGNN [44] 2.78 2.03 1.55 5.25 6.94 9.99 5.65 5.91 6.76
CLCRec [61] 2.81 2.25 1.82 4.22 6.85 10.92 4.38 5.13 6.35
CVAR [67] 1.89 1.88 1.50 2.04 4.20 7.16 2.31 3.05 3.91
CCFCRec [68] 2.49 1.95 1.64 3.00 4.94 8.60 3.68 4.11 5.19
CGRC (Ours) 4.20 3.71 2.96 7.04 12.37 19.35 6.63 8.45 10.61

Table 3: Effect of MGAE Structure

Graph Enc MLP Dec TikTok Yahoo Movie
N@10 N@20 N@10 N@20

✗ ✗ 2.04 2.68 5.77 7.60
✓ ✗ 1.86 2.37 7.45 9.50
✗ ✓ 2.52 3.15 6.88 8.99
✓ ✓ 2.88 3.64 8.45 10.61

Table 4: Comparison for user and edge aggregation methods

User Agg Edge Agg TikTok Yahoo Movie
N@10 N@20 N@10 N@20

Concat Multiply 1.60 2.08 7.46 9.43
Concat Concat 1.45 1.96 8.19 10.47
Mean Multiply 1.58 2.13 7.43 9.37
Mean Concat 2.88 3.64 8.45 10.61

Table 5: Effect of input feature modalities

Modalities TikTok Yahoo Movie
V A T N@10 N@20 N@10 N@20

✓ 1.77 2.26 6.76 8.59
✓ 1.20 1.53 2.74 3.96

✓ 1.13 1.45 4.76 6.48
✓ ✓ 2.47 3.15 6.54 8.53
✓ ✓ 1.95 2.45 7.79 10.18

✓ ✓ 1.65 2.16 6.09 8.00
✓ ✓ ✓ 2.88 3.64 8.45 10.61

The findings reveal that the optimal performance on both datasets
is obtained when all modalities (V, A, T) are utilized together. Specif-
ically, on the TikTok dataset, the combination of video and audio
modalities achieves the second-highest performance, followed by

video and text, and then video alone. For the Yahoo Movie dataset,
the video and text combination ranks second in performance, suc-
ceeded by video and audio, and then video alone.

Overall, we conclude that 1) all three modalities play their own
roles under our video/movie recommendation settings, 2) particular
modalities may play a stronger role depending on the data, e.g., with
more detailed text descriptions, text features may play a stronger
role in the case of Yahoo Movies, and 3) in general, video features
are the most essential with rich content signals.

4.4 Effect of Hyperparameters (RQ3)
We investigate the impact of 5 key hyperparameters of CGRC: the
embedding dimensionality 𝑑 , the masking ratio 𝜌 , the loss weights
𝜆{𝐸,𝑀 } , and the number of edges 𝐾 to be connected. We demon-
strate the results on two datasets, TikTok and Yahoo Movie, but a
similar trend is also observed in other datasets.

The results are depicted in Fig. 5. The performance with different
loss balancing factors, 𝜆M and 𝜆E, is illustrated in Fig. 5(a,b), respec-
tively, where the default value is set to 1.0 for both 𝜆E and 𝜆M. We
observe that the best performance is achieved with 𝜆M = 1.0 and
𝜆E = 0.5 on the TikTok dataset, while with 𝜆M = 1.0 and 𝜆E = 1.0
on the Yahoo Movie dataset. Overall, we conclude that each loss
plays its role with equal importance.

The masking ratio 𝜌 determines the number of cold items Icold
to be masked during training. From Fig. 5(c,d), we observe that the
best performance is achieved at the masking ratio of 0.5 on both
datasets. We see that masking too many items hurts the perfor-
mance since the available information to learn about the dataset
gets too sparse. On the other hand, masking too few items also
degrades the performance, taking little advantage of our proposed
method. In Fig. 5(e,f), we observe that the performance consistently
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Figure 5: Effect of Hyperparameters

Table 6: Case Studies of CGRC

User ID Watch history Recommended items

3315 E.T. The Extra-Terrestrial *Saving Private Ryan
Back to the Future Spartacus
Jurassic Park The Man Who Knew Too Much
Jaws The Maltese Falcon
Armageddon Kidnapped
The Lost World: Jurassic Park
Gladiator

784 Rocky Crossfire
Casino *Midnight Run
Bringing Out the Dead *The Godfather Part II
The Last Temptation of Christ Last Man Standing

Midnight Cowboy

peaks at 𝑑 = 256 on both datasets. When 𝑑 > 256, the performance
slightly drops, indicating that the model starts to overfit.

Finally, we investigate the impact of the value of 𝐾 , the number
of edges to reconstruct for each cold item. As depicted in Fig. 5(g,h),
connecting Icold to the top 𝐾 = 10 users yields the highest perfor-
mance on the TikTok dataset, aligning with the dataset’s charac-
teristic of approximately 10 average interactions per item. On the
Yahoo Movie dataset, the best result is achieved with 𝐾 = 40, which
is reasonable, considering that the average degree of an item for
the Yahoo Movie dataset is about 25. Note that an excessive num-
ber of edge connections degrades the performance, indicating that
too many edges introduce irrelevant information. This emphasizes
the importance of a proper value of 𝐾 to ensure meaningful and
relevant connections for recommendation.

4.5 Qualitative Analysis (RQ4)
We demonstrate the results of our proposed model, CGRC, through
qualitative case studies. Table 6 presents examples of two distinct
users with their watch histories and recommended items from our
model. The movies in bold and marked with an asterisk indicate
the ground truth, i.e., the movies that the user actually watched.

The first case is the user 3315, who has shown a preference
for science fiction and adventure movies. Notably, this user has
watched several Steven Spielberg films, including "E.T.", "Jurassic
Park", "Jaws", and "The Lost World: Jurassic Park". In response,

CGRC recommends movies such as "Spartacus" and "Saving Private
Ryan". "Spartacus" is a reasonable recommendation since it shares
similar contents with films like "Armageddon" and "Gladiator". On
the other hand, "Saving Private Ryan", differs significantly in con-
tent from the user’s viewing history, although it is a Spielberg film.
This example shows that CGRC is capable of retrieving relevant
movies that are not directly similar content-wise but aligned with
the user’s detailed preference considering CF signals.

Another example is user 784, who is interested inmovies "Casino"
and "Bringing Out the Dead", featuring actor Robert De Niro. Our
model, CGRC, successfully captures this interest, recommending
films such as "Midnight Run", "The Godfather Part 2", and "Last Man
Standing". Specifically, "The Godfather Part 2", featuring De Niro,
directly aligns with the user’s interests, as does "Last Man Standing"
in terms of content. Interestingly, although "Midnight Run" differs
from the user’s usual choices, it includes De Niro, leading to its
recommendation by CGRC. This demonstrates that the model’s
recommendations go beyond basic content matching, effectively
grasping user preferences.

5 CONCLUSION
In this work, we present a novel model called Content-based Graph
Reconstruction for Cold-start item recommendation (CGRC). By
leveraging interaction-based high-order connectivity, CGRC ef-
fectively tackles the challenging cold-start problem. Notably, our
approach incorporates a sophisticated graph masked autoencoding
structure, enhanced with multimodal representations to fully ex-
ploit rich content information in a cold-start scenario. Thus, our
approach not only distills informative signals but also facilitates the
self-supervised reconstruction of user-item edges. The superiority
of our model is demonstrated through extensive experiments con-
ducted on real datasets. As a future work, it would be worthwhile
to explore the effectiveness of CGRC in the warm-start setting.
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