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Roadmap

1. ideas of statistical learning theory
2. kernels and feature spaces

3. Support vector algorithms
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Statistical Learning Theory

1. started by Vapnik and Chervonenkis in the Sixties

2. model: we observe data generated by an unknown stochastic
regularity

3. learning = extraction of the regularity from the data

4. the analysis of the learning problem leads to notions of capacity
of the function classes that a learning machine can implement.

5. support vector machines use a particular type of function class:
classifiers with large “margins” in a feature space induced by a
kernel.

[49, 50]
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Example: Regression Estimation

e Data: input-output pairs (z;,y;) € R x R
e Reqularity: (x1,y1), ... (Tm,ym) drawn from P(x,y)

e Learning: choose a function f : R — R such that the error,
averaged over P, is minimized.

e Problem: P is unknown, so the average cannot be computed
— need an “induction principle”



Pattern Recognition

Learn f: X — {£1} from examples
(x1,91), -y (T, ym) € Xx{£1}, generated i.i.d. from P(z,y),

such that the expected misclassification error on a test set, also
drawn from P(x, y),

Rifl = [ §l5(e) =yl dP(o.p).

is minimal (Risk Minimization (RM)).
Problem: P is unknown. — need an induction principle.
Empirical risk minimization (ERM): replace the average over

P(x,y) by an average over the training sample, i.e. minimize the
traming error

Remp[f] — izm 1|f<372) - yz‘

m 1=12
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Risk minimization

[48]

e Regression estimation. RM: minimize
RIfl = [(f(@) ~ ) dPla.y
— leads to the regression y(x) = /y dP(y|z).

ERM gives least mean squares: minimize
Z,L-(f@ji) —y;)”
e Density estimation. RM: minimize
Rifl = [ (- 1ogp(a) dP(o
ERM gives maximum likelihood estimation: maximize

Z log p(x;) = 1Og(H p(;))



Convergence of Means to Expectations

Law of large numbers:

Rewmplf] = RLf]

as m — OoQ.

Does this imply that for the function f" minimizing Remyp, and
the function f°P* minimizing R, we have

Remplf™ — R[f™], R[f™ — R[f""]

as m — oo ( “consistency” of empirical risk minimization)?

No.

Need a uniform version of the law of large numbers. Uniform over
all functions that the learning machine can implement.
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Consistency and Uniform Convergence

Risk

f f oPt fm Function class
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Vapnik-Chervonenkis(VC)-Theory: Main Points

Necessary and suflicient conditions for consistency of empirical risk
minimization: one-sided convergence, uniformly over all functions
that can be implemented by the learning machine.

lim P{sup(R|f] — Rempl|f]) > €} =0 for all e > 0.

m—0o0 f

Vapnik, Chervonenkis and others give conditions for uniform con-
vergence in terms of capacity concepts, e.g.

e the VC-entropy grows sublinearly with m
e the VC-dimension is finite
e the entropy numbers are well-behaved

e the classification “margin” is large
le.g. 52, 50, 44, 61, 1]
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Conditions for Uniform Convergence

How to bound P{sup rc #(R[f] — Remplf]) > €}

e if the function class F contains only one function, then Cher-
noff’s bound suffices:

P{sup (R|f] — Remp|f]) > €} < 2 exp(—2me’)
feF

e if there are finitely many functions, use the union bound to get
a multiplicative constant on the RHS

e cven if there are infinitely many, then on any finite sample
there are effectively only finitely many (use symmetrization,

52])
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Pattern Recognition Capacity Concepts [50]

o VU entropy: on an example (z,y), f causes a loss Q(z,vy, f).
On a training set, different functions f € F lead to N7 different

1088 vectors Qf — (Q(xla Y1, f)7 Tt Q(ajma Ym, f)) Deﬁne
H” (m)=EIh N7
H” (m)/m — 0 <= uniform convergence (hence consistency)

e exchange expectation and logarithm: annealed entropy.

H7 (m)/m — 0 = exponential convergence
P{SI}P(R[f]—Remp[f]) > e} < 4-exp((Hapn(2m) /m)—€*)-m).

e take 'max’ instead of 'E’: growth function.
G7 (m)/m — 0 <= exponential convergence for all underlying
distributions
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Structure of the Growth Function

Either G7 (m) = m - In(2) — this means that for any sample
size m the points can be chosen such that by using functions of
the learning machine, all 2" possible loss vectors can be generated
(i.e., they can be separated in all possible ways — “shattered”).

Or there exists some maximal m tor which the above is possible.
Call this number the VC-dimension, and denote it by A. Then
one can prove that for m > h,

GF(m) < h (m% + 1) |

Nothing “in between” linear growth and logarithmic growth is
possible [51].
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A VC Bound for Pattern Recognition

For any f € F and m > h, with a probability of at least 1 — n,
h log(n
RIf) < Remplf] + ¢ ( ( ))

m’ m
holds, where ¢ is defined as

y (:;7 105;7(;7)) B \ h (10g27m +:n) = 1og(77/4).

(Derivation: in uniform convergence bounds, set RHS = 7, and solve for € to get the confidence term.)

The study of the consistency of ERM has thus led to concepts
and results which lets us formulate a better induction principle:
minimize the RHS of the bound.
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VC-Dimension: Example

Half-spaces in R?:
f(x,y) =sgn(a + bx + cy), with parameters a,b,c € R

e Clearly, we can shatter three non-collinear points.
e But we can never shatter four points.

e Hence the VC dimension is A = 3 (in this case, equal to the
number of parameters)

.
7
Zé
%
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VC-Dimension Example, ctd.

e more generally, separating hyperplanes in RY have a VC di-
mension of N + 1.

e hence: separating hyperplanes in high-dimensional feature
spaces have extremely large VC dimension, and may not gener-
alize well

e however, “margin” hyperplanes can still have a small VC di-
mension (see below)
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The Kernel Trick: Feature Spaces

Preprocess the data with

¢ X - H
r — d(x),

where H is a dot product space, and learn the mapping from ®(z)
to .

e usually, dim(X) < dim(H)

e “Curse of Dimensionality”?

e crucial issue: capacity, not dimensionality
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Example: All Degree 2 Monomials

(x1,m9) = (21, 29, 23) = (27, V2 x129, 23)
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General Product Feature Space

How about patterns x € RN and product features of order d?
Here, dim(H) grows like N.
Eg N =16 x 16, and d = 5 — dimension 10
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The Kernel Trick, N =d =2

(B(x), d(a")) = (a7, @ 129, 23) (27, V2 2zl o)
= (z,4)
= k(z, )

— the dot product in H can be computed in R?
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The Kernel Trick, 11

More generally: z, 12’ € RNV deN:
d al :
<:1:,:1:’> = Za:j : :13"7
1=1

/ / /
— Z Tj gyl el = (®(x), d(2")),
j17°'°7jd:1
where ® maps into the space spanned by all ordered products of
d input directions
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Mercer’s Theorem

If k 1s a continuous kernel of a positive definite integral oper-
ator on Lo(X) (where X is some compact space),

/ k(z, ") f(z)f(z") de d’ > 0,
X
it can be expanded as
O
k(z,2) =) Ngpi(z)ihi(a)
1=1
using eigenfunctions ¥; and eigenvalues \; > 0 [34].

In that case
VAY1(z)
O(z) = | VAoa(z)

satisfies (@(z), D(2')) = k(z,’).
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Positive Definite Kernels

[t can be shown that (modulo some details) the admissible class
of kernels coincides with the one of positive definite (pd) kernels:
kernels which are symmetric, and for

e any set of training points z1,...,zy; € X and
eany ay,...,am € R
satisty

Zaza]K > 0, where K;; = k(z;,z;).
0]
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The Feature Space for PD Kernels 5, 2, 38]

e define a feature map
o:X — RY
r — k(. x).

E.g., for the Gaussian kernel: /?D\

X X D) DX)

o turn ®(X) into a linear space, f(.) = > 1" aik(., x;),

e endow it with a dot product satisfying
(B(om), k(. 25)) = k(2 25)

e complete the space to get a reproducing kernel Hilbert space



Some Properties of Kernels

If k1, ko, ... are pd kernels, then so are
e ok, provided v > 0

® k1 + ko

® k- ko

o k(x,2) == limy o0 kn(x, ), provided it exists

Further operations to construct kernels from kernels: tensor prod-
ucts, direct sums, convolutions [23].
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The Kernel Trick — Summary

e any algorithm that only depends on dot products can benefit
from the kernel trick

e this way, we can apply linear methods to vectorial as well as
non-vectorial data

e think of the kernel as a nonlinear simzilarity measure
e examples of common kernels:
Polynomial k(z,z') = ({(x,2") + c)?
Sigmoid k(x,z") = tanh(k (z,2") + O)
Gaussian k(z, z') = exp(—||z — 2||?/(20?))

e Kernel are studied also in the Gaussian Process prediction com-
munity (covariance functions) [57, 54, 58, 33]
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An Example of a Kernel Algorithm

Idea: classify points x := ®(x) in feature space according to which
of the two class means is closer.

Compute the sign of the dot product between w := ¢4 — c¢_ and
X — C.



An Example of a Kernel Algorithm, ctd.

1 1

{iyi=+1} {iry;=—1}
1 1
= sgn — Z k(a:,:z:i)—% Z k(x,x;)+b
{i:yi=+1} {iry;=—1}

L1 1

(4,0):yi=yj=—1} {(4,9)yi=y;=+1}

e cf. Parzen windows

e the decision function is a hyperplane. Will it generalize well?
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Separating Hyperplane

<wW,x>+b>0

{x|<w,x>+b=0}

\
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Optimal Separating Hyperplane [53]

S {x|<w,x>+b=0}

\
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Eliminating the Scaling Freedom [49]

Note: if ¢ # 0, then
{x|{w,x) +b=0} ={x]| (ew,x) + cb = 0}.
Hence (e¢w, ¢b) describes the same hyperplane as (w, b).

Definition: The hyperplane is in canonical form w.rt. X* =
{x1,...,xp} if ming cx | (W,x;) +0] = 1.
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Canonical Optimal Hyperplane

Note:

<W; X;>+ b=+1

<Wh X,> + b=-1

=> <Ws (X=X, > = 2
W 2

e e W S 2
=> Swi <a7XD= ]
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VC Dimension of Margin Hyperplanes

Theorem [48]. Consider hyperplanes (w,x) = 0 where w
15 normalized such that they are in canonical form w.r.t. a set
of points X* = {x1,...,x}, i.e.,
min | (w,x;) | = 1.
1=1,...,7
The set of decision functions fw(x) = sgn(x,w) defined on
X™ and satisfying the constraint ||w|| < A has a VC dimension
satisfying
h < R°A®.
Here, R 1s the radius of the smallest sphere around the origin
containing X ™.
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Formulation as an Optimization Problem

Hyperplane with maximum margin: minimize
2
[w]]
(recall: margin ~ 1/||w||) subject to
yi - [(w,x;) +b] >1 fori=1...m

(i.e. the training data are separated correctly).
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Lagrange Function (e.g., [6])

Introduce Lagrange multipliers ozz- > (0 and a Lagrangian
Liw,b,a) = o [[w]/* - Zaz (w,x3) +8] 1),

L has to minimized w.r.t. the primal variables w and b and
maximized with respect to the dual variables o

e if a constraint is violated, then y; - ((w,x;) +0) — 1 <0 —

- ; will grow to increase L — how far”

-w, b want to decrease L; i.e. they have to change such that
the constraint is satisfied. If the problem is separable, this
ensures that a; < oo.

e similarly: if y; - ((w,x;) +b) — 1 > 0, then «; = 0: otherwise,
L could be increased by decreasing «; (KK'T conditions)
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Derivation of the Dual Problem

At the extremum, we have

0 0

(%L(W’b’a> 0, awL(W,b,a) 0,
1.e.
m
Z%‘%ZO
1=1
and

m
W = Z QY Xy .
1=1
Substitute both into L to get the dual problem
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The Support Vector Expansion

m
W = E :C%yixz'
1=1

where for all 2 = 1,...,m either
yi - (W, x;) +0] > 1 — «a; = 0 — x; irrelevant
or

y; - [(w,x;) +b] =1 (on the margin) — x; “Support Vector”
The solution 1s determined by the examples on the margin.

Thus
f(x) = sgn((x, w) +b)
= Sgn (Z Ozz'yi<X, XZ'> + b) :

1=1
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Dual Problem

Dual: maximize

Zaz -3 Z aza]yzyj<xfw >

1,)=1
subject to

m
a; >0, 1=1,...,m, and Z%’%’ZO-

Both the final decision function and the function to be maximized
are expressed in dot products — can use a kernel to compute

<X7;,Xj> — <CD(.CEZ'), (I)(ZIZ]>> — k(xz,x])
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The SV Expansion in Feature Space

e generally, the solution of kernel algorithms corresponds to a
single vector in H ( “Representer Theorem” [30, 39]),

m
W = Z a;P(x;).
1=1

However, there is usually no x € X such that
d(x) =w,
ie., ®(X) is not closed under linear combinations — it is a

nonlinear manifold (cf. [10, 40]).

e () is contained in a non-isotropic shape whose sidelengths
scale like the square roots of the eigenvalues of k£ or K [cf.

61, 60, 13, 59).
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Regularization Interpretation of Kernel Machines

The norm in H can be interpreted as a regularization term |21,
46, 19]: if P is a regularization operator such that k is Green’s
function of P* P, then

lwll = [Pl

W = Z:il OJZ'(I)(:CZ')
fla) =) aik(z; ).

Example: for Gaussian kernel, P is a linear combination of differ-
ential operators.

where

and

Corresponding MAP interpretation with prior exp (—)\HP f \2)
29].
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The SVM Architecture

fx)=sgn(| X | +b) classification f(x)=sgn ( Z A, k(x,x;) + b)
A Ay As Ay weights
k k Kk Kk comparison: k(x,x;), e.g. k(x,xi):(x-xi)c|
k(x.x;)=exp(=[x-xill* / c)
7 ) 4_ /I support vectors
Xq - X4 k(x,x;)=tanh(k(x-x;)+6)
/ input vector X
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Toy Example with (Gaussian Kernel

bz, 2!) = exp (—|lo — 2|}
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Nonseparable Problems [4, 15]

If y; - ((w,x;) +b) > 1 cannot be satisfied, then a; — oo.
Modity the constraint to
yi - ((W,x4) +b) > 1 =¢;
with
& >0
(“soft margin”) and add

C-» ¢
1=1

in the objective function.

Same dual, with additional constraints a; < C.
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SVM Training

e naive approach: the complexity of maximizing
m 1 m
Wa) = Zz’:l ay; — §Z7j,j:1 Yy ik (X, X )
scales with the third power of the training set size m
e only SVs are relevant — only compute (k(x;,x;));; for SVs.

Extract them iteratively by cycling through the training set in
chunks [48].

e in fact, one can use chunks which do not even contain all SVs
135]. Maximize over these sub-problems, using your favorite
optimizer.

e the extreme case: by making the sub-problems very small (just
two points), one can solve them analytically [37].

e http://www.kernel-machines.org /software.html
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MNIST Error Rates

handwritten character benchmark (60000 training & 10000 test
examples, 28 x 28)

Classifier test error | reference
linear classifier 8.4% 7
3-nearest-neighbour 2.4% 7]

SVM 14%  |[11
Tangent distance 1.1% 45
LeNetd 11% |31
Boosted LeNet4 0.7% 31]
Translation invariant SVM | 0.56% | [17]

Note: the SVM used a polynomial kernel of degree 9, corresponding to a feature
space of dimension ~ 3.2 - 10%.

Other successful applications: (28, 26, 24, 12, 47, 8, 63, 22, 20, 14, 18, 36, 55, 62|
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Unsupervised SVM Learning

X1,...,Tm € X 1.1.d. sample from P

e extreme view: unsupervised learning = density estimation

e casier problem: for a € (0, 1], compute a region R such that
P(R) =~ a.,
1.e., estimate quantiles of a distribution, not its density.

e becomes well-posed using a regularizer: find “smoothest” region
that contains a certain fraction of the probability mass

e given only the training data, we will get a trade-off: try to
enclose many training points (more than «) in a smooth region

A A

0 o
o (o]
o 0 o
o o 0
o) o o [
0 o

v
\J



Multi-Dimensional Quantiles

e C a class of measurable subsets of X
e )\ a real-valued function on C
e quantile function with respect to (P, X, C):
U(a) =inf{\(C)|P(C) > a,CeC} O0<a<l.

e present case [41]: A(C') o« ——, where

margin

C := {half-spaces in H, not containing the origin}
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Separating Unlabelled Data from the Origin

One can show: if ®(x1),...,P(zy,) are separable from the origin
in H, then the solution of
1
min =||w||>  subject to (w,®(z;)) > 1
WEH 2

1s the normal vector of the hyperplane separating the data from
the origin with maximum margin.
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v-Soft Margin Separation

For v € (0, 1], compute

- 1 2, 1
min SIWIT7 22 & —vp
wWeH EERM peR : MmN
subject to (W, ®(x;)) > p—&;, & >0 foralli.
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Dual Problem

Derived using the Lagrange formalism:

: 1
min =Y couosk(x;. xs
QL ER™ QZZQ 1) ( (% ])
: . 1 L
subject to 0 < a; < -, > o =

The decision function is

fla) = sen | 3 aghai, ) — p

— a thresholded sparsified Parzen windows estimator
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Support Vectors and Outliers

SV = {Z|Ozz > O}; OL = {’L|SZ > O}

The KKT-Conditions imply:
o(, >0= «; =1/(vm), hence OL C SV
e SV\OL C {i| ), ajk(zj,z;) — p =0}
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The Meaning of v

Proposition.

(i)
OL| SV
< =

m m
(1) Suppose P does mot contain discrete components, and

the kernel 1s analytic and non-constant. With probability 1,

asymptotically,
OL| L SV

m m

There are also v-versions of SV pattern recognition and SV regres-
sS101.
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2
Toy Examples using k(z,y) = exp(— le—yll” y” =)

Ooo °© " Ooo ° £
Ik -
| [] R | (| N |

~ widthe| 05,05 | 05 05

v

SVs/OLs | 0.54,0.43 | 0.59,0.47 | 0.24, 0.03 | 0.65, 0.38
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Kernel PCA [43]

linear PCA | k(X,y) = (xy)
2

S

kernel PCA k(x,y) = (x-y)d
A R? Y

X .-
/,/X
X
X

XX

k llllllllllllllllll » X X H
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Toy Example with (Gaussian Kernel

k(x,y) = exp (—|x — y|P)
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The Challenge: Designing Kernels

e transformation invariances (cf. poster of Olivier Chapelle)
e kernels for discrete objects [23, 56, 32, 3]

e kernels based on generative models: Fisher kernel [27]

e local kernels |e.g., 63]

e other sophisticated kernels: e.g., [5, 16, 42]

In general, the choice of a kernel corresponds to

e choosing a similarity measure for the data, or

e choosing a (linear) representation of the data, or
e choosing a hypothesis space for learning,

and should reflect prior knowledge about the problem at hand.
There is ‘no free lunch’ in kernel choice.
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Conclusion

e crucial ingredients of SV algorithms: kernels that can be repre-
sented as dot products, and large margin regularizers

e kernels allow the formulation of a multitude of geometrical algo-
rithms (Parzen windows, SV pattern recognition, SV quantile
estimation, kernel PCA|...)

e not only do these algorithms lend themselves well to theoretical
study — they also perform well in practice

Learning with Kernels For further information, cf.
b http://www.kernel-machines.org,
http://www.learning-with-kernels.org,

and [9, 16, 25, 42].
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