Chapter 13: Reinforcement Learning

CS 536: Machine Learning Littman (Wu, TA)

Administration

Midterms due Daily Show Video

Reinforcement Learning

[Read Chapter 13]

- [Exercises 13.1, 13.2, 13.4]
- Control learning
- Control policies that choose optimal actions
- Q learning
- Convergence

Control Learning

- Consider learning to choose actions, like:
- Robot learning to dock on battery charger
- Learning to choose actions to optimize factory output
- Learning to play Backgammon

Problem Characteristics

Note several problem characteristics:

- Delayed reward
- Opportunity for active exploration
- Possibility that state only partially observable
- Possible need to learn multiple tasks with same sensors/effectors

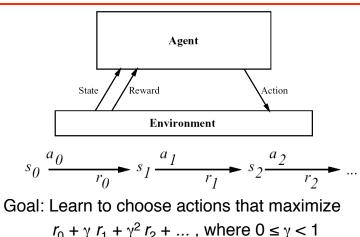
One Example: TD-Gammon

[Tesauro, 1995]

Learn to play Backgammon Immediate reward

- +100 if win
- $\bullet\,$ –100 if lose
- 0 for all other states
- Trained by playing 1.5 million games against itself.
- Now, approximately equal to best human player.

The RL Problem



Markov Decision Processes

Assume

- finite set of states S; set of actions A
- at each discrete time agent observes state s_t in S and chooses action a_t in A
- then receives immediate reward r_t & state changes to s_{t+1}
- Markov assumption:
 - $r_t = r(s_t, a_t)$ and $s_{t+1} = \delta(s_t, a_t)$ depend only on *current* state and action
 - δ and *r* may be nondeterministic
 - δ and *r* not necessarily known to agent

Agent's Learning Task

- Execute actions in environment, observe results, and
- learn action policy $\pi: S \rightarrow A$ that maximizes

 $E[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + ...]$

from any starting state in S

• here $0 \le \gamma < 1$ is the discount factor for future rewards

Different Learning Problem

Note something new:

- Target function is $\pi: S \rightarrow A$
- but we have no training examples of form <s, a>
- training examples are of form <<s, a>, r>

Value Function

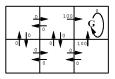
To begin, consider deterministic worlds... For each possible policy π the agent might adopt, we can define an evaluation function over states

$$V^{\pi}(s) = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots$$
$$= \sum_{i=0}^{\infty} \gamma^i r_{t+i}$$

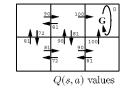
where r_t , r_{t+1} , ... are generated by following policy π starting at state *s*.

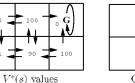
Restated, the task is to learn the optimal policy π^* : $\pi^* = \operatorname{argmax}_{\pi} V^{\pi}(s)$, $(\forall s)$.

Example MDP



r(s, a) (immediate reward) values





What to Learn

- We might try to have agent learn the evaluation function $V^{\pi*}$ (we write as V^*)
- It could then do a lookahead search to choose best action from any state *s* because

 $\pi^*(s) = \operatorname{argmax}_a \left[r\left(s, \, a\right) + \gamma \, V^*(\delta(s, \, a)) \right]$

- A problem:
- This works well if agent knows δ: S×A→S, and r: S×A→ ℜ
- But, when it doesn't, it can't choose actions this way.

Q Function

Define new function very similar to V^* $Q(s, a) = r(s, a) + \gamma V^*(\delta(s, a))]$ If agent learns Q, it can choose optimal action even without knowing δ ! $\pi^*(s) = \operatorname{argmax}_a [r(s, a) + \gamma V^*(\delta(s, a))]$ $= \operatorname{argmax}_a Q(s, a)$ Q is the evaluation function the agent will learn.

Training Rule to Learn Q

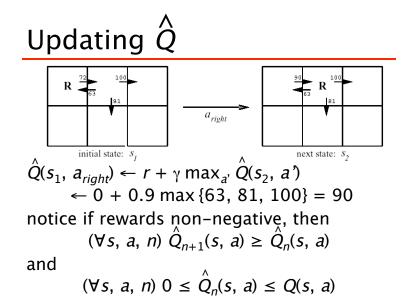
Note Q and V^* closely related: $V^*(s) = \max_{a'} Q(s, a')$ This allows us to write Q recursively as $Q(s_t, a_t) = r(s_t, a_t) + \gamma V^*(\delta(s_t, a_t))$ $= r(s_t, a_t) + \gamma \max_{a'} Q(s_{t+1}, a')$ Nice! Let \hat{Q} denote learner's current approximation to Q. Use training rule $\hat{Q}(s, a) \leftarrow r + \gamma \max_{a'} \hat{Q}(s', a')$ where s' is the state resulting from applying action a in state s.

Q Learning in Deterministic Case

For each *s*, *a* initialize table entry $\hat{Q}(s, a) \leftarrow 0$

Observe current state *s.* Do forever:

- Select an action *a* and execute it
- Receive immediate reward *r*
- Observe the new state s'
- Update the table entry for $\hat{Q}(s, a)$ via: $\hat{Q}(s, a) \leftarrow r + \gamma \max_{a'} \hat{Q}(s', a')$
- *s* ← *s*'



Convergence Proof

- \hat{Q} converges to Q. Consider case of deterministic world where see each $\langle s, a \rangle$ visited infinitely often.
- *Proof*: Define a full interval to be an interval during which each $\langle s, a \rangle$ is visited. During each full interval the largest error in \hat{Q} table is reduced by factor of γ
- Let \hat{Q}_n be table after *n* updates, and *n* be the maximum error in \hat{Q}_n ; that is $\Delta_n = \max_{s,a} |\hat{Q}_n(s, a) - Q(s, a)|$

Proof Continued

For table entry $\hat{Q}_n(s, a)$ updated on iteration n + 1, the error in the revised estimate $\hat{Q}_{n+1}(s, a)$ is $|\hat{Q}_{n+1}(s, a) - Q(s, a)|$ $= |(r + \gamma \max_{a'} \hat{Q}_n(s', a')) - (r + \gamma \max_{a'} Q(s', a'))|$ $= \gamma |\max_{a'} \hat{Q}_n(s', a') - \max_{a'} Q(s', a')|$ $\leq \gamma \max_{a'} |\hat{Q}_n(s', a') - Q(s', a')|$ $\leq \gamma \max_{a',s''} |\hat{Q}_n(s'', a') - Q(s'', a')|$ $|\hat{Q}_{n+1}(s, a) - Q(s, a)| \leq \gamma \Delta_n$ Note that we used the fact that $|\max_a f_1(a) - \max_a f_2(a)| \leq \max_a |f_1(a) - f_2(a)|$

Nondeterministic Case

- What if reward and next state are non-deterministic?
- We redefine *V*,*Q* by taking expected values

$$V^{\pi}(s) = E[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots]$$

= $E[\Sigma_{i=0}^{\infty} \gamma^i r_{t+i}]$
 $Q(s, a) = E[r(s, a) + \gamma V^{*}(\delta(s, a))]$

Nondeterministic Case

Q learning generalizes to nondeterministic worlds Alter training rule to $\hat{Q}_n(s, a) \leftarrow (1-\alpha_n)Q_{n-1}(s,a) + \alpha_n[r + \gamma \max_{a'} \hat{Q}_{n-1}(s', a')]$ where

 $\alpha_n = 1/(1 + visits_n(s, a)).$ Can still prove convergence of \hat{Q} to Q[Watkins and Dayan, 1992].

Temporal Difference Learning

 $\begin{array}{l} Q \text{ learning: reduce discrepancy between successive} \\ Q \text{ estimates} \\ \text{One step time difference:} \\ Q^{(1)}(s_t,a_t) &\equiv r_t + \gamma \max_a Q(s_{t+1},a) \\ \text{Why not 2 steps?} \\ Q^{(2)}(s_t,a_t) &\equiv r_t + \gamma r_{t+1} + \gamma^2 \max_a Q(s_{t+2},a) \\ \text{Or } n \text{?} \\ Q^{(n)}(s_t,a_t) &\equiv r_t + \ldots + \gamma^{(n-1)} r_{t+n-1} + \gamma^n \max_a Q(s_{t+n},a) \\ \text{Blend all of these:} \\ Q^{\lambda}(s_t,a_t) &\equiv (1-\lambda) \left[Q^{(1)}(s_t,a_t) + \lambda Q^{(2)}(s_t,a_t) + \ldots \right] \end{array}$

Temporal Difference Learning

 $Q^{\lambda}(s_t, a_t) = (1-\lambda) \left[Q^{(1)}(s_t, a_t) + \lambda Q^{(2)}(s_t, a_t) + \dots \right]$ Equivalent expression:

 $Q^{\lambda}(s_t, a_t) = r_t + \gamma [(1-\lambda) \max_a \hat{Q}(s_t, a_t) + \lambda Q^{\lambda}(s_{t+1}, a_{t+1})]$ TD(λ) algorithm uses above training rule

- Sometimes converges faster than Q learning (not well understood in control case)
- converges for learning V for any $0 \le \lambda \le 1$ (Dayan, 1992)
- Tesauro's TD-Gammon uses this algorithm to estimate the value function via self play.

Subtleties & Ongoing Research

- Replace \hat{Q} table with neural net or other generalizer
- Handle case where state only partially observable
- Design optimal exploration strategies
- Extend to continuous action, state
- Learn and use $\hat{\delta}$: $S \times A \rightarrow S$
- Relationship to dynamic programming and heuristic search