
Chapter 13:
Reinforcement Learning

CS 536: Machine Learning

Littman (Wu, TA)

Administration

Midterms due

Daily Show

Video

Reinforcement Learning

[Read Chapter 13]

• [Exercises 13.1, 13.2, 13.4]

• Control learning

• Control policies that choose
optimal actions

• Q learning

• Convergence

Control Learning

Consider learning to choose actions,
like:

• Robot learning to dock on battery
charger

• Learning to choose actions to
optimize factory output

• Learning to play Backgammon

Problem Characteristics

Note several problem characteristics:

• Delayed reward

• Opportunity for active exploration

• Possibility that state only partially
observable

• Possible need to learn multiple tasks
with same sensors/effectors

One Example: TD-Gammon

[Tesauro, 1995]

Learn to play Backgammon

Immediate reward

• +100 if win

• -100 if lose

• 0 for all other states

Trained by playing 1.5 million games
against itself.

Now, approximately equal to best human
player.

The RL Problem

Goal: Learn to choose actions that maximize

r0 + " r1 + "2 r2 + ... , where 0 ! " < 1

Markov Decision Processes

Assume

• finite set of states S; set of actions A

• at each discrete time agent observes
state st in S and chooses action at in A

• then receives immediate reward rt & state
changes to st+1

• Markov assumption:
– rt = r(st, at) and st+1 = !(st, at) depend only on

current state and action

– ! and r may be nondeterministic

– ! and r not necessarily known to agent

Agent's Learning Task

Execute actions in environment,
observe results, and

• learn action policy #: S) A that

maximizes

E[rt + " rt+1 + "2 rt+2 + …]

from any starting state in S

• here 0 ! " < 1 is the discount factor

for future rewards

Different Learning Problem

Note something new:

• Target function is #: S) A

• but we have no training examples of
form <s, a>

• training examples are of form
<<s, a>, r>

Value Function

To begin, consider deterministic worlds...

For each possible policy # the agent might
adopt, we can define an evaluation
function over states

V#(s) $ rt+ " rt+1 + "2 rt+2 + …

$ %i=0
& "i rt+i

where rt, rt+1, … are generated by following
policy # starting at state s.

Restated, the task is to learn the optimal
policy #': #' $ argmax# V

#(s), ((s).

Example MDP

What to Learn

We might try to have agent learn the
evaluation function V#' (we write as V*)

It could then do a lookahead search to
choose best action from any state s
because

#*(s) = argmaxa [r (s, a) + " V*(!(s, a))]

A problem:

• This works well if agent knows !: S+A)S,
and r: S+A) ,

• But, when it doesn't, it can't choose
actions this way.

Q Function

Define new function very similar to V*

Q(s, a) $ r(s, a) + " V*(!(s, a))]

If agent learns Q, it can choose
optimal action even without
knowing !!

#*(s) = argmaxa [r (s, a) + " V*(!(s, a))]

 = argmaxa Q(s, a)

Q is the evaluation function the agent
will learn.

Training Rule to Learn Q

Note Q and V* closely related:

V*(s) = maxa’ Q(s, a’)

This allows us to write Q recursively as

Q(st, at) = r(st, at) + " V*(!(st, at))

= r(st, at) + " maxa’ Q(st+1, a’)

Nice! Let Q denote learner's current
approximation to Q. Use training rule

Q(s, a) * r + " maxa’ Q(s’, a’)

where s’ is the state resulting from
applying action a in state s.

^

^ ^

Q Learning in Deterministic Case

For each s, a initialize table entry
Q(s, a) * 0

Observe current state s.

Do forever:

• Select an action a and execute it

• Receive immediate reward r

• Observe the new state s’

• Update the table entry for Q(s, a) via:

Q(s, a) * r + " maxa’ Q(s’, a’)

• s * s’

^

^ ^

^

Updating Q

Q(s1, aright) * r + " maxa’ Q(s2, a’)

* 0 + 0.9 max {63, 81, 100} = 90

notice if rewards non-negative, then

((s, a, n) Qn+1(s, a) ! Qn(s, a)

and

((s, a, n) 0 " Qn(s, a) " Q(s, a)

^

^ ^

^ ^

^

Convergence Proof

Q converges to Q. Consider case of
deterministic world where see each
<s, a> visited infinitely often.

Proof: Define a full interval to be an interval
during which each <s, a> is visited.
During each full interval the largest error
in Q table is reduced by factor of "

Let Qn be table after n updates, and n be
the maximum error in Qn; that is

-n = maxs,a |Qn(s, a) - Q (s, a) |

^

^

^

^

^

Proof Continued

For table entry Qn(s, a) updated on iteration n +1,
the error in the revised estimate Qn+1(s, a) is

|Qn+1(s, a) - Q(s, a)|

= |(r + " maxa’ Qn(s’, a’)) - (r + " maxa’ Q(s’, a’))|

= " | maxa’ Qn(s’, a’) - maxa’ Q(s’, a’)|

" " maxa’ | Qn(s’, a’) - Q(s’, a’)|

" " maxa’,s’’ | Qn(s’’, a’) - Q(s’’, a’)|

|Qn+1(s, a) - Q (s, a) | " " -n

Note that we used the fact that

| maxa f1(a) - maxa f2(a)| " maxa | f1(a) - f2(a)|

^

^

^

^

^

^

^

^

Nondeterministic Case

What if reward and next state are
non-deterministic?

We redefine V,Q by taking expected
values

V#(s) $ E[rt + " rt+1 + "2 rt+2 + …]

$ E[%i=0
& "i rt+i]

Q(s, a) $ E[r(s, a) + "V*(!(s, a))]

Nondeterministic Case

Q learning generalizes to
nondeterministic worlds

Alter training rule to

Qn(s, a) * (1-/n)Qn-1(s,a) +
/n [r + " maxa’ Qn-1(s’, a’)]

where

/n = 1/(1 + visitsn(s, a)).

Can still prove convergence of Q to Q
[Watkins and Dayan, 1992].

^ ^

^

^

Temporal Difference Learning

Q learning: reduce discrepancy between successive
Q estimates

One step time difference:

Q(1)(st,at) $ rt + " maxa Q(st+1,a)

Why not 2 steps?

Q(2)(st,at) $ rt + " rt+1 + "2 maxa Q(st+2,a)

Or n ?

Q(n)(st,at) $ rt + … + "(n-1) rt+n-1 + "n maxa Q(st+n,a)

Blend all of these:

Q .(st,at) $ (1-.) [Q(1)(st,at) + .Q(2)(st,at) + …]

Temporal Difference Learning

Q .(st,at) $ (1-.) [Q(1)(st,at) + .Q(2)(st,at) + …]

Equivalent expression:
Q .(st,at) $ rt+" [(1-.) maxa Q(st,at) + .Q .(st+1,at+1)]

TD(.) algorithm uses above training rule

• Sometimes converges faster than Q
learning (not well understood in control
case)

• converges for learning V for any 0"."1
(Dayan, 1992)

• Tesauro's TD-Gammon uses this
algorithm to estimate the value function
via self play.

^

Subtleties & Ongoing Research

• Replace Q table with neural net or other
generalizer

• Handle case where state only partially
observable

• Design optimal exploration strategies

• Extend to continuous action, state

• Learn and use !: S+A)S

• Relationship to dynamic programming
and heuristic search

^

^

